精英家教网 > 高中数学 > 题目详情

设椭圆的左焦点为,离心率为,过点且与轴垂直的直线被椭圆截得的线段长为.
(1) 求椭圆方程.
(2) 过点的直线与椭圆交于不同的两点,当面积最大时,求.

(1) ;(2).

解析试题分析:(1)由离心率得,由过点且与轴垂直的直线被椭圆截得的线段长为,再加椭圆中可解出,可得椭圆方程;(2)将直线方程设为,交点设出,然后根据题意算出的面积,令,所以当且仅当时等号成立,求出面积最大时的.
试题解析:(1)由题意可得,又,解得,所以椭圆方程为               (4分)
(2)根据题意可知,直线的斜率存在,故设直线的方程为,设由方程组消去得关于的方程 (6分)由直线与椭圆相交于两点,则有,即
由根与系数的关系得
        (9分)
又因为原点到直线的距离
的面积
,所以当且仅当时等号成立,
时,              (12分)
考点:1.椭圆方程;2.椭圆与直线综合;3.基本不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在轴上方有一段曲线弧,其端点轴上(但不属于),对上任一点及点,满足:.直线分别交直线两点.

(Ⅰ)求曲线弧的方程;
(Ⅱ)求的最小值(用表示);

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知△ABC中, 点A,B的坐标分别为A(-,0),B(,0)点C在x轴上方.
(Ⅰ)若点C坐标为(,1),求以A,B为焦点且经过点C的椭圆的方程:
(Ⅱ)过点P(m,0)作倾斜角为的直线l交(1)中曲线于M,N两点,若点Q(1,0)恰在以线段MN为直径的圆上,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知抛物线焦点为,直线经过点且与抛物线相交于两点

(Ⅰ)若线段的中点在直线上,求直线的方程;
(Ⅱ)若线段,求直线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在原点,焦点在轴上,焦距为,且经过点,直线交椭圆于不同的两点A,B.
(1)求的取值范围;,
(2)若直线不经过点,求证:直线的斜率互为相反数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是抛物线上相异两点,到y轴的距离的积为

(1)求该抛物线的标准方程.
(2)过Q的直线与抛物线的另一交点为R,与轴交点为T,且Q为线段RT的中点,试求弦PR长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,椭圆C过点,两个焦点为
(1)求椭圆C的方程;
(2) 是椭圆C上的两个动点,如果直线的斜率与的斜率互为相反数,证明直线的斜率为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左、右焦点分别为,P为椭圆 上任意一点,且的最小值为.
(1)求椭圆的方程;
(2)动圆与椭圆相交于A、B、C、D四点,当为何值时,矩形ABCD的面积取得最大值?并求出其最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线的参数方程为是参数是曲线轴正半轴的交点.以坐标原点为极点,轴正半轴为极轴建立极坐标系,求经过点与曲线只有一个公共点的直线的极坐标方程.

查看答案和解析>>

同步练习册答案