设直线与双曲线交于A、B,且以AB为直径的圆过原点,求点的轨迹方程.
2y2-x2=1(x2<3).
解析试题分析:将直线与双曲线方程联立,消去y(或x),得到关于x的一元二次方程。由题意知方程有两根,故二次项系数不为0,且判别式大于0,解出a的范围,即所求轨迹方程的定义域。根据韦达定理得到两根之和,两根之积(整体计算比计算出两个根要简单)。根据且以AB为直径的圆过原点,可得直线AO和直线BO垂直,可利用斜率之积等于列式计算,但这种情况需对斜率存在与否进行讨论。为了省去讨论的麻烦可用向量问题来解决。详见解析。
试题解析: 解:联立直线与双曲线方程得,消去y得:(a2-3)x2+2abx+b2+1=0.
∵直线与双曲线交于A、B两点,∴⇒a2<3.
设A(x1,y1),B(x2,y2)则x1+x2=,x1·x2=.
由⊥得x1x2+y1y2=0,又y1·y2=(ax1+b)(ax2+b)=a2x1x2+ab(x1+x2)+b2,
∴有+a2·-+b2=0.
化简得:a2-2b2=-1.故P点(a,b)的轨迹方程为2y2-x2=1(x2<3).
考点:直接法求轨迹方程
科目:高中数学 来源: 题型:解答题
如图,已知椭圆的右顶点为A(2,0),点P(2e,)在椭圆上(e为椭圆的离心率).
(1)求椭圆的方程;
(2)若点B,C(C在第一象限)都在椭圆上,满足,且,求实数λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:的离心率为,过椭圆右焦点的直线与椭圆交于点(点在第一象限).
(Ⅰ)求椭圆的方程;
(Ⅱ)已知为椭圆的左顶点,平行于的直线与椭圆相交于两点.判断直线是否关于直线对称,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
给定椭圆,称圆心在坐标原点O,半径为的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是.
(1)若椭圆C上一动点满足,求椭圆C及其“伴随圆”的方程;
(2)在(1)的条件下,过点作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为,求P点的坐标;
(3)已知,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点的直线的最短距离.若存在,求出a,b的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(13分) 已知椭圆C的中心在原点,离心率等于,它的一个短轴端点点恰好是抛物线 的焦点。
(1)求椭圆C的方程;
(2)已知P(2,3)、Q(2,-3)是椭圆上的两点,A,B是椭圆上位于直线PQ两侧的动点,
①若直线AB的斜率为,求四边形APBQ面积的最大值;
②当A、B运动时,满足=,试问直线AB的斜率是否为定值,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:.
(1)椭圆的短轴端点分别为(如图),直线分别与椭圆交于两点,其中点满足,且.
①证明直线与轴交点的位置与无关;
②若∆面积是∆面积的5倍,求的值;
(2)若圆:.是过点的两条互相垂直的直线,其中交圆于、两点,交椭圆于另一点.求面积取最大值时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆 的左、右焦点分别是、,是椭圆右准线上的一点,线段的垂直平分线过点.又直线:按向量平移后的直线是,直线:按向量平移后的直线是 (其中)。
(1) 求椭圆的离心率的取值范围。
(2)当离心率最小且时,求椭圆的方程。
(3)若直线与相交于(2)中所求得的椭圆内的一点,且与这个椭圆交于、两点,与这个椭圆交于、两点。求四边形ABCD面积的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com