精英家教网 > 高中数学 > 题目详情

如图,已知椭圆的右顶点为A(2,0),点P(2e,)在椭圆上(e为椭圆的离心率).

(1)求椭圆的方程;
(2)若点B,C(C在第一象限)都在椭圆上,满足,且,求实数λ的值.

(1),(2).

解析试题分析:(1)求椭圆方程,基本方法是待定系数法.关键是找全所需条件. 椭圆中三个未知数的确定只需两个独立条件,本题椭圆经过两点,就是两个独立条件,(2)直线与椭圆位置关系问题就要从其位置关系出发,本题中条件一是平行关系,二是垂直关系.设直线的斜率就可表示点及点再利用就可列出关于斜率及λ的方程组.得到,可利用类比得到两式相除可解得代入可得

试题解析:(1)由条件,代入椭圆方程,
   2分


所以椭圆的方程为   5分
(2)设直线OC的斜率为
则直线OC方程为
代入椭圆方程

   7分
又直线AB方程为
代入椭圆方程


   9分

在第一象限,   12分


   15分
   16分
考点:椭圆方程,直线与椭圆位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知△的两个顶点的坐标分别是,且所在直线的斜率之积等于
(1)求顶点的轨迹的方程,并判断轨迹为何种圆锥曲线;
(2)当时,过点的直线交曲线两点,设点关于轴的对称点为(不重合), 试问:直线轴的交点是否是定点?若是,求出定点,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左、右焦点分别为,离心率为,P是椭圆上一点,且面积的最大值等于2.
(1)求椭圆的方程;
(2)直线y=2上是否存在点Q,使得从该点向椭圆所引的两条切线相互垂直?若存在,求点Q的坐标;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆上的点到左右两焦点的距离之和为,离心率为.
(1)求椭圆的方程;
(2)过右焦点的直线交椭圆于两点,若轴上一点满足,求直线的斜率的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的焦点为,过点的直线交抛物线于点.
(Ⅰ)若(点在第一象限),求直线的方程;
(Ⅱ)求证:为定值(点为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知分别是椭圆的左、右焦点,椭圆与抛物线有一个公共的焦点,且过点.

(Ⅰ)求椭圆的方程;
(Ⅱ)设点是椭圆在第一象限上的任一点,连接,过点作斜率为的直线,使得与椭圆有且只有一个公共点,设直线的斜率分别为,,试证明为定值,并求出这个定值;
(III)在第(Ⅱ)问的条件下,作,设于点
证明:当点在椭圆上移动时,点在某定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是抛物线上的两个点,点的坐标为,直线的斜率为k, 为坐标原点.
(Ⅰ)若抛物线的焦点在直线的下方,求k的取值范围;
(Ⅱ)设C为W上一点,且,过两点分别作W的切线,记两切线的交点为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆经过点,离心率为
(1)求椭圆C的方程:
(2)过点Q(1,0)的直线l与椭圆C相交于A、B两点,点P(4,3),记直线PA,PB的斜率分别为k1,k2,当k1·k2最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设直线与双曲线交于A、B,且以AB为直径的圆过原点,求点的轨迹方程.

查看答案和解析>>

同步练习册答案