分析 根据条件构造函数g(x)=f(x)ex,求函数的导数,研究函数的单调性即可得到结论.
解答 解:设g(x)=f(x)ex,
则g′(x)=f′(x)ex+f(x)ex=ex(f′(x)+f(x)),
∵f′(x)≥-f(x),∴f′(x)+f(x)≥0,
则g′(x)≥0,
则函数g(x)为单调递增函数或常数函数,
∵f(0)=1,f(2)=$\frac{1}{{e}^{2}}$.
∴g(0)=f(0)e0=1,
g(2)=f(2)e2=1,
则g(0)=g(2)=1,
∴函数g(x)是常数函数,
则g(x)=1,即g(1)=f(1)e=1,
则f(1)=$\frac{1}{e}$,
故答案为:$\frac{1}{e}$
点评 本题主要考查函数值的计算,根据条件构造函数,求函数的导数研究函数单调性的性质是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {2,4} | B. | {2,4,6} | C. | {0,2,4} | D. | {0,2,4,6} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2x+y+1=0 | B. | 2x+y-1=0 | C. | 2x-y-1=0 | D. | 2x-y+1=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | b>c>a |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com