精英家教网 > 高中数学 > 题目详情

【题目】已知函数,则下列判断正确的是(

A.函数的最小正周期为,在上单调递增

B.函数的最小正周期为,在上单调递增

C.函数的最小正周期为,在上单调递增

D.函数的最小正周期为,在上单调递增

【答案】D

【解析】

利用周期函数的定义,通过取特值,结合二倍角公式求得最小正周期的可能的一系列的值,然后从小到大进行检验,得到函数的最小正周期;利用二倍角的三角函数公式展开整理,再利用三角函数的性质和二次函数的性质判定单调性,进而作出判定.

的周期,则,即

,∴,,

,则

时,

,

π不是的周期,

,则

时,

,

不是函数f(x)的周期,

,则

时,

,

,∴不是函数f(x)的周期,

,则,

的周期,

的最小正周期.

关于函数的单调性:

,

上,从0递增到1,再从1递减到0,递增到,再递减到

递减到0,再从0递增到,再从递减到0,再从0递增到

上不是单调递增函数,

上,从-1单调递增到,单调递增到0,

单调递减到0,∴从-3单调递增到

综上所述,ABC错误,D正确.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽粒,古称角黍,是端午节大家都会品尝的食品.如图,平行四边形形状的纸片是由六个边长为2的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的体积为_________;若该六面体内有一球,当该球体积最大时,球的表面积是__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知矩形和菱形所在平面互相垂直,如图,其中 ,点为线段的中点.

(Ⅰ)试问在线段上是否存在点,使得直线平面?若存在,请证明平面,并求出的值,若不存在,请说明理由;

(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】二进制来源于我国古代的《易经》,该书中有两类最基本的符号:“─”﹣﹣,其中“─”在二进制中记作“1”﹣﹣在二进制中记作“0”.如符号对应的二进制数0112化为十进制的计算如下:01120×22+1×21+1×20310.若从两类符号中任取2个符号进行排列,则得到的二进制数所对应的十进制数大于2的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象在点处的切线斜率为,其中为自然对数的底数.

(1)求实数的值,并求的单调区间;

(2)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】受新冠肺炎疫情影响,某学校按上级文件指示,要求错峰放学,错峰有序吃饭.高三年级一层楼六个班排队,甲班必须排在前三位,且丙班、丁班必须排在一起,则这六个班排队吃饭的不同安排方案共有(

A.240B.120C.188D.156

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某机械零件的几何结构,该几何体是由两个相同的直四棱柱组合而成的,且前后、左右、上下均对称,每个四棱柱的底面都是边长为2的正方形,高为4,且两个四棱柱的侧棱互相垂直.则这个几何体有________个面,其体积为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为抑制房价过快上涨和过度炒作,各地政府响应中央号召,因地制宜出台了系列房价调控政策.某市拟定出台“房产限购的年龄政策”.为了解人们对“房产限购年龄政策”的态度,在2060岁的人群中随机调查100人,调查数据的频率分布直方图和支持“房产限购”的人数与年龄的统计结果如图所示:

年龄

支持的人数

15

5

15

28

17

1)由以上统计数据填列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以44岁为分界点的不同人群对“房产限购年龄政策”的支持度有差异?

44岁以下

44岁及44岁以上

总计

支持

不支持

总计

2)若以44岁为分界点,从不支持“房产限购”的人中按分层抽样的方法抽取8人参加政策听证会,现从这8人中随机抽2.记抽到44岁以上的人数为,求随机变量的分布列及数学期望.

参考公式:.

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),左图为选取的15名志愿者身高与臂展的折线图,右图为身高与臂展所对应的散点图,并求得其回归方程为,以下结论中不正确的为

A. 15名志愿者身高的极差小于臂展的极差

B. 15名志愿者身高和臂展成正相关关系,

C. 可估计身高为190厘米的人臂展大约为189.65厘米,

D. 身高相差10厘米的两人臂展都相差11.6厘米,

查看答案和解析>>

同步练习册答案