精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x},x≥0}\\{-2x,x<0}\end{array}\right.$,若函数g(x)=f(f(x))+k在x∈R上有且仅有一个零点,则实数k的取值范围是(  )
A.(e,+∞)B.(1,e)C.(-∞,-e)D.(-e,-1)

分析 依题意知-k=f(f(x))=$\left\{\begin{array}{l}{{e}^{{e}^{x}},x≥0}\\{{e}^{-2x},x<0}\end{array}\right.$,x≥0,${e}^{{e}^{x}}$≥e,x<0,e-2x>1,根据函数g(x)=f(f(x))+k在x∈R上有且仅有一个零点,即可得出结论.

解答 解:依题意知-k=f(f(x))=$\left\{\begin{array}{l}{{e}^{{e}^{x}},x≥0}\\{{e}^{-2x},x<0}\end{array}\right.$,
x≥0,${e}^{{e}^{x}}$≥e,x<0,e-2x>1,
∵函数g(x)=f(f(x))+k在x∈R上有且仅有一个零点,
∴1<-k<e,∴-e<k<-1,
故选:D.

点评 本题考查分段函数,考查函数的零点,考查学生分析解决问题的能力,正确求出分段函数是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.(1)已知函数f(x)=2x+$\frac{1}{x}$(x>0),证明函数f(x)在(0,$\frac{\sqrt{2}}{2}$)上单调递减,并写出函数f(x)的单调递增区间;
(2)记函数g(x)=a|x|+2ax(a>1)
①若a=4,解关于x的方程g(x)=3;
②若x∈[-1,+∞),求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=\frac{x}{{{x^2}+1}}+1$,g(x)=x2eax(a<0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若对任意x1,x2∈[0,2],f(x1)≥g(x2)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某校从学生会宣传部6名成员(其中男生4人,女生2人)中,任选3人参加某省举办的“我看中国改革开放三十年”演讲比赛活动.
(1)设所选3人中女生人数为ξ,求ξ的分布列;
(2)求男生甲或女生乙被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)为奇函数,当x>0,f(x)=x(1+x),那么x<0,f(x)等于(  )
A.-x(1-x)B.x(1-x)C.-x(1+x)D.x(1+x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如表数据是水温度x(℃)对黄酮延长性y(%)效应的试验结果,y是以延长度计算的,且对于给定的x,y为变量.
x(℃)300400500600700800
y(%)405055606770
(1)画出散点图;
(2)指出x,y是否线性相关;若线性相关,求y关于x的回归方程;
(3)估计水温度是1 000℃时,黄酮延长性的情况.(参考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知二次函数y=f(x)的图象与x轴的交点为(-1,0)和(4,0),与y轴的交点为(0,4),则该函数的单调递减区间为(  )
A.$(-∞,\frac{3}{2}]$B.$[\frac{3}{2},+∞)$C.(-∞,-1]D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.执行如图所示的程序框图,如果输入n=3,则输出的 S=(  )
A.$\frac{4}{9}$B.$\frac{8}{9}$C.$\frac{3}{7}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在梯形ABCD中,AB∥CD,AB=4,AD=DC=CB=2,四边形ACFE是矩形,AE=1,平面ACFE⊥平面ABCD,点G是BF的中点.
(1)求证:CG∥平面ADF;
(2)直线BE与平面ACFE所成角的正切值.

查看答案和解析>>

同步练习册答案