精英家教网 > 高中数学 > 题目详情
2.已知函数$f(x)=\frac{x}{{{x^2}+1}}+1$,g(x)=x2eax(a<0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若对任意x1,x2∈[0,2],f(x1)≥g(x2)恒成立,求a的取值范围.

分析 (Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(Ⅱ)问题等价于“对于任意x∈[0,2],f(x)min≥g(x)max成立”,根据函数的单调性求出a的范围即可.

解答 解:(Ⅰ)函数f(x)的定义域为R,$f'(x)=\frac{{(1-{x^2})}}{{{{({x^2}+1)}^2}}}=\frac{(1-x)(1+x)}{{{{({x^2}+1)}^2}}}$.…(2分)
当x变化时,f'(x),f(x)的变化情况如下表:

x(-∞,-1)(-1,1)(1,+∞)
f'(x)-+-
f(x)
所以,函数f(x)的单调递增区间是(-1,1),
单调递减区间是(-∞,-1),(1,+∞).…(5分)
(Ⅱ)依题意,“对于任意x1,x2∈[0,2],f(x1)≥g(x2)恒成立”
等价于“对于任意x∈[0,2],f(x)min≥g(x)max成立”.
由(Ⅰ)知,函数f(x)在[0,1]上单调递增,在[1,2]上单调递减,
因为f(0)=1,$f(2)=\frac{2m}{5}+1>1$,所以函数f(x)的最小值为f(0)=1.
所以应满足g(x)max≤1.…(7分)
因为g(x)=x2eax,所以g'(x)=(ax2+2x)eax.…(8分)
因为a<0,令g'(x)=0得,x1=0,${x_2}=-\frac{2}{a}$.
(ⅰ)当$-\frac{2}{a}≥2$,即-1≤a<0时,
在[0,2]上g'(x)≥0,所以函数g(x)在[0,2]上单调递增,
所以函数$g{(x)_{max}}=g(2)=4{e^{2a}}$.
由4e2a≤1得,a≤-ln2,所以-1≤a≤-ln2.  …(11分)
(ⅱ)当$0<-\frac{2}{a}<2$,即a<-1时,
在$[0,-\frac{2}{a})$上g'(x)≥0,在$(-\frac{2}{a},2]$上g'(x)<0,
所以函数g(x)在$[0,-\frac{2}{a})$上单调递增,在$(-\frac{2}{a},2]$上单调递减,
所以$g{(x)_{max}}=g(-\frac{2}{a})=\frac{4}{{{a^2}{e^2}}}$.
由$\frac{4}{{{a^2}{e^2}}}≤1$得,$a≤-\frac{2}{e}$,所以a<-1.   …(13分)
综上所述,a的取值范围是(-∞,-ln2].   …(14分)

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想、转化思想,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.如图,在直三棱柱ABC-A1B1C1中,平面A1BC⊥侧面A1B1BA,且AA1=AB=BC=2,则AC与平面A1BC所成角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.为监测全市小学生身体形态生理机能的指标情况,体检中心从某小学随机抽取100名学生,将他们的身高(单位:厘米)数据分成如下5个组:[100,110),[110,120),…,[140,150),并绘制成频率分布直方图(如图所示).
(Ⅰ)若该校共有学生1000名,试估计身高在[100,130)之间的人数;
(Ⅱ)在抽取的100名学生中,按分层抽样的方法从身高为:[100,110),[130,140),[140,150)3个组的学生中选取7人参加一项身体机能测试活动,并从这7人中任意抽取2人进行定期跟踪测试,求这2人取自不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x2+alnx-x(a≠0),g(x)=x2
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若对于任意的a∈(1,+∞),总存在x1,x2∈[1,a],使得f(x1)-f(x2)>g(x1)-g(x2)+m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在(x-3)7的展开式中,x5的系数是189(结果用数值表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.命题“?x>0,x2-2x+1<0”的否定是(  )
A.?x<0,x2-2x+1≥0B.?x≤0,x2-2x+1>0C.?x>0,x2-2x+1≥0D.?x>0,x2-2x+1<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=2cos($\frac{π}{2}$-x)cos(x+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$.
(Ⅰ)求函数f(x)的最小正周期和单调递减区间;
(Ⅱ)求函数f(x)在区间[0,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x},x≥0}\\{-2x,x<0}\end{array}\right.$,若函数g(x)=f(f(x))+k在x∈R上有且仅有一个零点,则实数k的取值范围是(  )
A.(e,+∞)B.(1,e)C.(-∞,-e)D.(-e,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知双曲线的渐近线方程为$y=±\sqrt{3}x$,一个焦点为$(0,-2\sqrt{2})$,则双曲线的标准方程是$\frac{{y}^{2}}{6}$-$\frac{{x}^{2}}{2}$=1.

查看答案和解析>>

同步练习册答案