精英家教网 > 高中数学 > 题目详情

如图所示,在山顶铁塔上B处测得地面上一点A的俯角为α,在塔底C处测得A处的俯角为β.已知铁塔BC部分的高为h,求出山高CD.

 

【答案】

 

【解析】本试题主要是考查了解三角形在实际生活中的运用。

首先根据已知条件,分析边角的情况,利用正弦定理得到AC的长度表示式,然后在直角三角形Rt△ACD,再结合高度表示得到CD的值,这样可以得到高度。

解:  在△ABC中,∠BCA=90°+β,∠ABC=90°α,

BACβ,∠CAD=β.

根据正弦定理得:

,∴AC =

在Rt△ACD中,CD=ACsin∠CAD=ACsinβ=

答: 山的高度为  .

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,某人在斜坡P处仰视正对面山顶上一座铁塔,塔高AB=80米,塔所在山高OA=220米,OC=200米,观测者所在斜坡CD近似看成直线,斜坡与水平面夹角为α,tanα=
12

(1)以射线OC为Ox轴的正向,OB为Oy轴正向,建立直角坐标系,求出斜坡CD所在直线方程;
(2)当观察者P视角∠APB最大时,求点P的坐标(人的身高忽略不计).

查看答案和解析>>

科目:高中数学 来源: 题型:

某人在一山坡P处观看对面山顶上的一座铁塔,如图所示,塔高BC=40(米),塔所在的山高OB=290(米),OA=210(米),图中所示的山坡可视为直线l且点P在直线l上,l与水平地面的夹角为α,tanα=
13
.试问此人距水平地面多高时,观看塔的视角∠BPC最大(不计此人的身高).

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题16分)

如图所示,某人在斜坡P处仰视正对面山顶上一座铁塔,塔高AB=80米,塔所在山高OA=220米,OC=200米,观测者所在斜坡CD近似看成直线,斜坡与水平面夹角为

(1)以射线OC为轴的正向,OB为轴正向,建立直角坐标系,求出斜坡CD所在直线方程;

(2)当观察者P视角∠APB最大时,求点P的坐标(人的身高忽略不计).

查看答案和解析>>

科目:高中数学 来源:2010届上海市虹口区高三第二次模拟考试数学卷 题型:解答题

(本题16分)

如图所示,某人在斜坡P处仰视正对面山顶上一座铁塔,塔高AB=80米,塔所在山高OA=220米,OC=200米,观测者所在斜坡CD近似看成直线,斜坡与水平面夹角为

(1)以射线OC为轴的正向,OB为轴正向,建立直角坐标系,求出斜坡CD所在直线方程;

(2)当观察者P视角∠APB最大时,求点P的坐标(人的身高忽略不计).

 

查看答案和解析>>

同步练习册答案