精英家教网 > 高中数学 > 题目详情

已知F(1,0),P是平面上一动点,P到直线l:x=-1上的射影为点N,且满足(=0

(1)求点P的轨迹C的方程;

(2)过点M(1,2)作曲线C的两条弦MA,MB,设MA,MB所在直线的斜率分别为k1,k2,当k1,k2变化且满足k1+k2=-1时,证明直线AB恒过定点,并求出该定点坐标.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知Q(
3
,0)
,P为抛物线x2=4y上的动点,若P到抛物线的准线y=-1的距离为d,记抛物线的焦点为F(0,1),则d+|PQ|的最小值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•浦东新区二模)已知
i
=(1,0),
c
=(0,
2
)
,若过定点A(0,
2
)
、以
i
c
(λ∈R)为法向量的直线l1与过点B(0,-
2
)
c
i
为法向量的直线l2相交于动点P.
(1)求直线l1和l2的方程;
(2)求直线l1和l2的斜率之积k1k2的值,并证明必存在两个定点E,F,使得|
PE
|+|
PF
|
恒为定值;
(3)在(2)的条件下,若M,N是l:x=2
2
上的两个动点,且
EM
FN
=0
,试问当|MN|取最小值时,向量
EM
+
FN
EF
是否平行,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆=1上任意一点P,由P向x轴作垂线段PQ,垂足为Q,点M在线段PQ上,且=2,点M的轨迹为曲线E.

(1)求曲线E的方程;

(2)若过定点F(0,2)的直线l交曲线E于不同的两点G,H(点G在点F,H之间),且满足=2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:2012年安徽省马鞍山市高考数学二模试卷(理科)(解析版) 题型:解答题

已知椭圆+=1(0<b<2)的左焦点为F,左、右顶点分别为A、C,上顶点为B,过F、B、C作圆P.
(I)当b=时,求圆P的方程;
(II)直线AB与圆P能否相切?证明你的结论.

查看答案和解析>>

同步练习册答案