£¨2009•ÆÖ¶«ÐÂÇø¶þÄ££©ÒÑÖª
i
=(1£¬0)£¬
c
=(0£¬
2
)
£¬Èô¹ý¶¨µãA(0£¬
2
)
¡¢ÒÔ
i
-¦Ë
c
£¨¦Ë¡ÊR£©Îª·¨ÏòÁ¿µÄÖ±Ïßl1Óë¹ýµãB(0£¬-
2
)
ÒÔ
c
+¦Ë
i
Ϊ·¨ÏòÁ¿µÄÖ±Ïßl2ÏཻÓÚ¶¯µãP£®
£¨1£©ÇóÖ±Ïßl1ºÍl2µÄ·½³Ì£»
£¨2£©ÇóÖ±Ïßl1ºÍl2µÄбÂÊÖ®»ýk1k2µÄÖµ£¬²¢Ö¤Ã÷±Ø´æÔÚÁ½¸ö¶¨µãE£¬F£¬Ê¹µÃ|
PE
|+|
PF
|
ºãΪ¶¨Öµ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÈôM£¬NÊÇl£ºx=2
2
ÉϵÄÁ½¸ö¶¯µã£¬ÇÒ
EM
FN
=0
£¬ÊÔÎʵ±|MN|È¡×îСֵʱ£¬ÏòÁ¿
EM
+
FN
Óë
EF
ÊÇ·ñƽÐУ¬²¢ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨1£©¸ù¾ÝËù¸øÖ±ÏßÉϵĶ¨µã×ø±êÒÔ¼°·¨ÏòÁ¿£¬¼´¿Éд³öÁ½Ö±Ïß·½³Ì£®
£¨2£©¸ù¾Ý£¨1£©ÖÐËùÇóÖ±Ïßl1ºÍl2µÄ·½³Ì£¬¿É·Ö±ðÇó³öÁ½Ö±ÏßµÄбÂÊ£¬ÔÙ¼ÆËãk1k2£¬Îª¶¨Öµ
1
2
£¬ÔÙÓÃpµã×ø±ê±íʾk1k2£¬ÓëÇ°ÃæËùÇók1k2µÄÖµÏàµÈ£¬¼´¿ÉµÃµ½PµãµÄ¹ì¼£·½³Ì£®ÎªÍÖÔ²£¬¸ù¾ÝÍÖÔ²¶¨Ò壬¿ÉÖªÍÖÔ²Éϵĵ㵽Á½¸ö½¹µãµÄ¾àÀëÖ®ºÍΪ¶¨Ö²£¬ËùÒԱشæÔÚÁ½¸ö¶¨µãE£¬F£¬Ê¹µÃ|
PE
|+|
PF
|
ºãΪ¶¨Öµ£®
£¨3£©ÒòΪM£¬NµÄºá×ø±êÏàͬ£¬Éè³öËüÃǵÄ×Ý×ø±ê£¬ÏÈ°Ñ|MN|ÓÃM£¬NµÄ×Ý×ø±ê±íʾ£¬¸ù¾ÝÇÒ
EM
FN
=0
£¬Çó³öM£¬N×Ý×ø±êµÄ¹Øϵʽ£¬´úÈë|MN|£¬¼´¿ÉÇó³ö|MN|µÄ×îСֵ£¬ÒÔ¼°ÏàÓ¦µÄM£¬N×Ý×ø±ê£¬²¢¾Ý´ËÇó³öÏòÁ¿
EM
+
FN
µÄ×ø±ê£¬¸ù¾ÝÁ½ÏòÁ¿Æ½ÐеÄ×ø±ê¹Øϵ£¬¼´¿ÉÅжÏÏòÁ¿
EM
+
FN
Óë
EF
ÊÇ·ñƽÐУ®
½â´ð£º½â£º£¨1£©Ö±Ïßl1µÄ·¨ÏòÁ¿
n1
=( 1 £¬ -
2
¦Ë )
£¬l1µÄ·½³Ì£ºx-
2
¦Ë ( y-
2
 )=0
£¬
¼´Îªx-
2
¦Ëy+2¦Ë=0
£»
Ö±Ïßl2µÄ·¨ÏòÁ¿
n1
=( ¦Ë £¬ 
2
 )
£¬l2µÄ·½³Ì£º¦Ëx+
2
 ( y+
2
 )=0
£¬
¼´Îª¦Ëx+
2
y+2=0
£® 
£¨2£©k1k2=
1
2
¦Ë
•( -
¦Ë
2
 )=-
1
2
£®   
ÉèµãPµÄ×ø±êΪ£¨x£¬y£©£¬ÓÉk1k2=
y-
2
x
y+
2
x
=-
1
2
£¬µÃ
x2
4
+
y2
2
=1
£®
ÓÉÍÖÔ²µÄ¶¨ÒåµÄÖª´æÔÚÁ½¸ö¶¨µãE¡¢F£¬Ê¹µÃ|
PE
|+|
PF|
ºãΪ¶¨Öµ4£®
´ËʱÁ½¸ö¶¨µãE¡¢FΪÍÖÔ²µÄÁ½¸ö½¹µã£®
£¨3£©ÉèM ( 2
2
 £¬ y1)
£¬N ( 2
2
 £¬ y2)
£¬Ôò
EM
=( 3
2
 £¬ y1)
£¬
FN
=( 
2
 £¬ y2)
£¬
ÓÉ
EM
FN
=0
£¬µÃy1y2=-6£¼0£®
|MN|2=£¨y1-y2£©2=y12+y22-2y1y2¡Ý-2y1y2-2y1y2=-4y1y2=24£»
µ±ÇÒ½öµ±
y1=
6
  
y2=-
6
»ò
y1=-
6
y2=
6
 
ʱ£¬|MN|È¡×îСֵ
6
£®
EM
+
FN
=( 4
2
 £¬ y1+y2)=( 4
2
 £¬ 0 )=2
EF
£¬¹Ê
EM
+
FN
Óë
EF
ƽÐУ®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÍÖÔ²¶¨ÒåµÄÓ¦Óã¬ÒÔ¼°Ö±ÏßÓëԲ׶ÇúÏßÏཻÏÒ³¤µÄÇ󷨣®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2009•ÆÖ¶«ÐÂÇøһģ£©Èçͼ£ºÄ³ÎÛË®´¦Àí³§ÒªÔÚÒ»¸ö¾ØÐÎÎÛË®´¦Àí³Ø£¨ABCD£©µÄ³Øµ×ˮƽÆÌÉèÎÛË®¾»»¯¹ÜµÀ£¨Rt¡÷FHE£¬HÊÇÖ±½Ç¶¥µã£©À´´¦ÀíÎÛË®£¬¹ÜµÀÔ½¶Ì£¬ÆÌÉè¹ÜµÀµÄ³É±¾Ô½µÍ£®Éè¼ÆÒªÇó¹ÜµÀµÄ½Ó¿ÚHÊÇABµÄÖе㣬E£¬F·Ö±ðÂäÔÚÏ߶ÎBC£¬ADÉÏ£®ÒÑÖªAB=20Ã×£¬AD=10
3
Ã×£¬¼Ç¡ÏBHE=¦È£®
£¨1£©ÊÔ½«ÎÛË®¾»»¯¹ÜµÀµÄ³¤¶ÈL±íʾΪ¦ÈµÄº¯Êý£¬²¢Ð´³ö¶¨ÒåÓò£»
£¨2£©Èôsin¦È+cos¦È=
3
+1
2
£¬Çó´Ëʱ¹ÜµÀµÄ³¤¶ÈL£»
£¨3£©ÎÊ£ºµ±¦ÈÈ¡ºÎֵʱ£¬ÆÌÉè¹ÜµÀµÄ³É±¾×îµÍ£¿²¢Çó³ö´Ëʱ¹ÜµÀµÄ³¤¶È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2009•ÆÖ¶«ÐÂÇøһģ£©ÒÑÖªÊýÁÐ{an}ÊǵȱÈÊýÁУ¬ÆäÇ°nÏîºÍΪSn£¬ÈôS2=12£¬S3=a1-6£¬Ôò
limn¡ú¡Þ
Sn
=
16
16
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2009•ÆÖ¶«ÐÂÇøһģ£©º¯Êýy=2sin2xµÄ×îСÕýÖÜÆÚΪ
¦Ð
¦Ð
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2009•ÆÖ¶«ÐÂÇøһģ£©¶ÔÓÚº¯Êýf1£¨x£©£¬f2£¨x£©£¬h£¨x£©£¬Èç¹û´æÔÚʵÊýa£¬bʹµÃh£¨x£©=a•f1£¨x£©+b•f2£¨x£©£¬ÄÇô³Æh£¨x£©Îªf1£¨x£©£¬f2£¨x£©µÄÉú³Éº¯Êý£®
£¨1£©ÏÂÃæ¸ø³öÁ½×麯Êý£¬h£¨x£©ÊÇ·ñ·Ö±ðΪf1£¨x£©£¬f2£¨x£©µÄÉú³Éº¯Êý£¿²¢ËµÃ÷ÀíÓÉ£®
µÚÒ»×飺f1(x)=sinx£¬f2(x)=cosx£¬h(x)=sin(x+
¦Ð
3
)
£»
µÚ¶þ×飺f1£¨x£©=x2-x£¬f2£¨x£©=x2+x+1£¬h£¨x£©=x2-x+1£®
£¨2£©Éèf1(x)=log2x£¬f2(x)=log
1
2
x£¬a=2£¬b=1
£¬Éú³Éº¯Êýh£¨x£©£®Èô²»µÈʽh£¨4x£©+t•h£¨2x£©£¼0ÔÚx¡Ê[2£¬4]ÉÏÓн⣬ÇóʵÊýtµÄÈ¡Öµ·¶Î§£®
£¨3£©Éèf1(x)=x(x£¾0)£¬f2(x)=
1
x
(x£¾0)
£¬È¡a£¾0£¬b£¾0Éú³Éº¯Êýh£¨x£©Í¼ÏóµÄ×îµÍµã×ø±êΪ£¨2£¬8£©£®Èô¶ÔÓÚÈÎÒâÕýʵÊýx1£¬x2ÇÒx1+x2=1£¬ÊÔÎÊÊÇ·ñ´æÔÚ×î´óµÄ³£Êým£¬Ê¹h£¨x1£©h£¨x2£©¡Ýmºã³ÉÁ¢£¿Èç¹û´æÔÚ£¬Çó³öÕâ¸ömµÄÖµ£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2009•ÆÖ¶«ÐÂÇø¶þÄ££©ÔÚ¡÷ABCÖУ¬A¡¢B¡¢CËù¶ÔµÄ±ß·Ö±ðΪa¡¢b¡¢cÒÑÖªa=2
3
 £¬ c=2
£¬ÇÒ
.
sinCsinB0
0b-2c
cosA01
.
=0
£¬Çó¡÷ABCµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸