精英家教网 > 高中数学 > 题目详情
设函数y=f(x)的图象与函数y=ax-3的图象关于直线y=x对称,若f(x)>2的解集是(1,+∞),则a=
2
2
分析:根据两个函数的图象关于直线y=x对称可知这两个函数互为反函数,故只要利用求反函数的方法求出原函数的反函数,然后解不等式loga(x+3)>2即可.
解答:解:∵函数y=f(x)的图象与函数y=ax-3的图象关于直线y=x对称,
∴函数y=f(x)与函数y=ax-3互为反函数,
又∵函数y=ax-3的反函数为:y=loga(x+3),
即f(x)=loga(x+3),
∴f(x)>2?loga(x+3)>2,
由题意知必有a>1.
loga(x+3)>2?x+3>a2,?x>a2-3,
∵f(x)>2的解集是(1,+∞),
∴a2-3=1,⇒a=2.
故答案为:2.
点评:本小题主要考查反函数、对数式的运算等基础知识,考查运算求解能力、化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数y=f(x)的定义域为R,并且满足f(x+y)=f(x)+f(y),f(
13
)=1
,且当x>0时,f(x)>0.
(1)求f(0)的值;
(2)判断函数的奇偶性;
(3)如果f(x)+f(2+x)<2,求x取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)的定义域为全体R,当x<0时,f(x)>1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y)成立,数列{an}满足a1=f(0),且f(an+1)=
1
f(
-an
2an+1
)
(n∈N*
(Ⅰ)求证:y=f(x)是R上的减函数;          
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)若不等式
k
(1+a1)(1+a2)…(1+an)
-
1
2n+1
≤0
对一切n∈N*均成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)的定义域为R+,若对于给定的正数k,定义函数:fk(x)=
k,f(x)≤k
f(x),f(x)>k
,则当函数f(x)=
1
x
,k=1
时,函数fk(x)的图象与直线x=
1
4
,x=2,y=0围成的图形的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•闵行区一模)(文)设函数y=f(x)的反函数是y=f-1(x),且函数y=f(x)过点P(2,-1),则f-1(-1)=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•南汇区二模)设函数y=f(x)的定义域为R,对任意实数x,y都有f(x+y)=f(x)+f(y),当x>0时f(x)<0且f(3)=-4.
(1)求证:y=f(x)为奇函数;
(2)在区间[-9,9]上,求y=f(x)的最值.

查看答案和解析>>

同步练习册答案