精英家教网 > 高中数学 > 题目详情
7.已知全集U=R,A={x|y=$\sqrt{x-3}$},B={x|1≤x≤7},C={x|x≥a-1}
(1)求A∩B;A∪B;
(2)若C∪A=A,求实数a的取值范围.

分析 (1)求出集合A,再求A∩B;A∪B;
(2)若C∪A=A,则C⊆A,即可求实数a的取值范围.

解答 解:(1)A={x|y=$\sqrt{x-3}$}={x|x≥3},…(2分)
∵B={x|1≤x≤7},…(2分)
∴A∩B={x|3≤x≤7};A∪B={x|x≥1},…(2分)
(2)∵C∪A=A,∴C⊆A…(2分)
∴a-1≥3…(2分)
得a≥4  …(1分)
∴实数a的取值范围为{a|a≥4} …(1分)

点评 此题考查了交集及其运算,以及并集及其运算,熟练掌握各自的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.地球的北纬45°圈上有A,B两点,它们分别在东经70°和东经160°的经线上,则A,B两点的球面距离与其在此北纬45°圈上劣弧长的比值为$\frac{3\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.$\underset{lim}{x→∞}$(1-$\frac{1}{{x}^{2}}$)${\;}^{3{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)是定义在R上的奇函数,x≥0时,f(x)=-x2+2x.
(1)求f(x)在R上的表达式;
(2)令g(x)=f(x),问是否存在大于零的实数a、b,使得当x∈[a,b]时,函数g(x)值域为$[{\frac{1}{b},\frac{1}{a}}]$,若存在求出a、b的值,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知集合A={1,3,5,7,9},B={3,4,5},求:
(1)A∪B,A∩B;
(2)若C={x|x∈A,且x∉B},求集合C.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.执行如图所示的程序框图,若输入n的值为5,则输出的s的值为11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设{an}是等比数列,且a3=$\frac{3}{2}$,S3=$\frac{9}{2}$,则q=(  )
A.1B.-$\frac{1}{2}$C.1或-$\frac{1}{2}$D.1或$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆O:x2+y2=4,直线l:mx+y-m-$\sqrt{3}$=0.
(1)直线l恒过定点P,求点P的坐标及原点O到直线l的距离的最大值.
(2)当m=$\sqrt{3}$时,判断直线l与圆O是否相交?若相交,求相交弦的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=x2+2cosx,x∈R,若$f({log_{\frac{1}{3}}}a)+f({log_3}a)≤2f(1)$,则实数a的取值范围为[$\frac{1}{3}$,3].

查看答案和解析>>

同步练习册答案