分析 令x2=t,则$\underset{lim}{x→∞}$(1-$\frac{1}{{x}^{2}}$)${\;}^{3{x}^{2}}$=$\underset{lim}{t→+∞}$$(1-\frac{1}{t})^{3t}$=${e}^{\underset{lim}{t→+∞}ln(1-\frac{1}{t})^{3t}}$,从而求$\underset{lim}{t→+∞}$ln$(1-\frac{1}{t})^{3t}$即可.
解答 解:令x2=t,则
$\underset{lim}{x→∞}$(1-$\frac{1}{{x}^{2}}$)${\;}^{3{x}^{2}}$
=$\underset{lim}{t→+∞}$$(1-\frac{1}{t})^{3t}$
=${e}^{\underset{lim}{t→+∞}ln(1-\frac{1}{t})^{3t}}$,
∵$\underset{lim}{t→+∞}$ln$(1-\frac{1}{t})^{3t}$=$\underset{lim}{t→+∞}$$\frac{ln(1-\frac{1}{t})}{\frac{1}{3t}}$
=$\underset{lim}{t→+∞}$$\frac{\frac{1}{{t}^{2}}}{-\frac{1}{3}\frac{1}{{t}^{2}}}$=-3,
故$\underset{lim}{x→∞}$(1-$\frac{1}{{x}^{2}}$)${\;}^{3{x}^{2}}$=$\underset{lim}{t→+∞}$$(1-\frac{1}{t})^{3t}$=e-3.
点评 本题考查了函数的极限的求法及应用.
科目:高中数学 来源: 题型:选择题
| A. | $({\frac{1}{3},1})$ | B. | $({-∞,\frac{1}{3}})∪({1,+∞})$ | C. | (-$\frac{1}{3}$,$\frac{1}{3}$) | D. | $({-∞,-\frac{1}{3}})∪({\frac{1}{3},+∞})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (4,-3) | B. | (-$\frac{2}{5}$,-$\frac{8}{5}$) | C. | (-$\frac{2}{5}$,$\frac{1}{5}$) | D. | (0,-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | π | B. | 2π | C. | 3π | D. | 4π |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com