| A. | $({\frac{1}{3},1})$ | B. | $({-∞,\frac{1}{3}})∪({1,+∞})$ | C. | (-$\frac{1}{3}$,$\frac{1}{3}$) | D. | $({-∞,-\frac{1}{3}})∪({\frac{1}{3},+∞})$ |
分析 由已知可得,函数f(x)为偶函数,且在x≥0时为增函数,在x≤0时为减函数,若f(x)>f(2x-1),则|x|>|2x-1|,解得答案.
解答 解:∵函数f(x)=e1+|x|-$\frac{1}{{1+{x^2}}}$满足f(-x)=f(x),
故函数f(x)为偶函数,
当x≥0时,y=e1+|x|=e1+x为增函数,y=$\frac{1}{{1+{x^2}}}$为减函数,
故函数f(x)在x≥0时为增函数,在x≤0时为减函数,
若f(x)>f(2x-1),则|x|>|2x-1|,
即x2>4x2-4x+1,即3x2-4x+1<0,
解得:x∈$(\frac{1}{3},1)$,
故选:A.
点评 本题考查的知识点是函数单调性,函数的奇偶性,绝对值不等式的解法,难度中档.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | 1 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -$\frac{1}{2}$ | C. | 1或-$\frac{1}{2}$ | D. | 1或$\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com