精英家教网 > 高中数学 > 题目详情
1.各种比赛在计算选手最后得分时,要去掉所有评委对该选手所打分数中的最高分和最低分,试设计一个找出最高分的算法.

分析 可以用循环语句来完成分数的输入,由于每位学生的分数都不小于0分,故我们可以先假设其中的最大数为0,然后每次输入一个学生的分数,就进行一次比较,若输入的数大于0,就将之代替最大数,依次下去,就能找出最大数.

解答 解:由题意得:
第一步:令S=0.max=0,i=1
第二步:比较a(i)与max的大小,如果a(i)>max,则max=a(i);
第三步:是否已经统计每一个学生的成绩,如果是,则执行第四步,如果不是,则i=i+1后,返回第二步
第四步:输出max的值.

点评 本题考查的知识点是设计程序框图解决实际问题,分析题意设计出满足条件的算法,并根据框图和语句的功能来实现该算法,是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知集合P={x∈R|0<x<5},集合Q={x∈R|-1≤x<3}
(1)求P∩Q,P∪Q    
(2)求P∩∁RQ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=lnx-$\frac{1}{2}$ax2+x,a∈R.
(1)若函数f(x)有极值,求a的取值范围;
(2)若关于x的不等式f(x)≤ax-1恒成立,求整数a的最小值;
(3)是否存在x0>0,使得|f(x)+$\frac{1}{2}{ax}^{2}$-f(x0)|<x对任意x>0成立?若存在,求出x0的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.函数f(x)=2sin2x-sin(2x-$\frac{5π}{6}$),x∈R.
(I)求函数f(x)的最大值,并写出f(x)取最大值时x的取值集合;
(Ⅱ)若锐角θ满足tanθ=2$\sqrt{2}$,求f(θ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=loga(1-ax)在区间[1,2]单调增,则a的取值范围是(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知a、b、c为正数,若a2+b2+4c2=1,求ab+2ac+3$\sqrt{2}$bc的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在三棱柱ABC-A1B1C1中,△ABC是边长为2正三角形,D、E分别是线段BB1、AC1的中点,DE⊥AC1
(1)求证:DE⊥平面AA1C1C;
(2)若AA1C1C是矩形,BB1=4,求直线BB1与平面ADC1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知max(a,b)表示a,b两数中的最大值.若f(x)=max{e|x|,e|x-2|},则f(x)的最小值为e.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=e1+|x|-$\frac{1}{{1+{x^2}}}$,则使得f(x)>f(2x-1)成立的x的取值范围是(  )
A.$({\frac{1}{3},1})$B.$({-∞,\frac{1}{3}})∪({1,+∞})$C.(-$\frac{1}{3}$,$\frac{1}{3}$)D.$({-∞,-\frac{1}{3}})∪({\frac{1}{3},+∞})$

查看答案和解析>>

同步练习册答案