分析 (I)利用展开得出f(θ)=1+sin(2θ$-\frac{π}{6}$)=1+sin2θ$•\frac{\sqrt{3}}{2}$$-cos2θ•\frac{1}{2}$,利用二倍角公式求解即可.
解答 解:∵f(x)=2sin2x-sin(2x-$\frac{5π}{6}$),x∈R.
∴f(x)=1$+(sin2x•\frac{\sqrt{3}}{2}-\frac{1}{2}•cos2x)$=1+sin(2x$-\frac{π}{6}$).
(I)最大值为2,此时2x-$\frac{π}{6}$=2kπ+$\frac{π}{2}$,k∈z,
解得:x=kπ$+\frac{π}{3}$,k∈z.
∴f(x)取最大值2时x的取值集合{x|x=kπ$+\frac{π}{3}$,k∈z}
(II)f(θ)=1+sin(2θ$-\frac{π}{6}$)=1+sin2θ$•\frac{\sqrt{3}}{2}$$-cos2θ•\frac{1}{2}$
∵tanθ=2$\sqrt{2}$,cos2θ=$\frac{1-ta{n}^{2}θ}{1+ta{n}^{2}θ}$,sin2θ=$\frac{2tanθ}{1-ta{n}^{2}θ}$
∴cos2θ=$-\frac{7}{9}$,sin2θ=$\frac{4\sqrt{2}}{9}$
f(θ)=1+$\frac{4\sqrt{2}}{9}$×$\frac{\sqrt{3}}{2}$-(-$\frac{7}{9}$)×$\frac{1}{2}$=$\frac{25}{18}$$+\frac{2\sqrt{6}}{9}$
点评 本题考查三角函数的最值,涉及二倍角公式的三角函数求解问题,属中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0,$\frac{1}{3}$ | B. | 2,3 | C. | 2,$\frac{2}{3}$ | D. | 0,1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com