精英家教网 > 高中数学 > 题目详情
已知a、b、x、y都是正数,且x+y=1,比较的大小.
【答案】分析:先将分别进行平方,再进行作差比较,利用条件x+y=1进行转化,提取公因式得到完全平方形式从而判定出符号.
解答:解:∵ax+by-(ax2+by2+2xy
=ax(1-x)+by(1-y)-2xy
=axy+bxy-2xy
=xy(a+b-2
=xy(-2>0
∴ax+by>ax2+by2+2xy

点评:本题主要考查了两个值比较大小,根式利用比较它们的平方之间的大小关系得到自身的大小关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a、b、x、y都是正数,且x+y=1,比较
ax+by
与x
a
+y
b
的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

A.选修4-1:几何证明选讲
如图,直角△ABC中,∠B=90°,以BC为直径的⊙O交AC于点D,点E是AB的中点.
求证:DE是⊙O的切线.
B.选修4-2:矩阵与变换
已知二阶矩阵A有特征值-1及其对应的一个特征向量为
1
-4
,点P(2,-1)在矩阵A对应的变换下得到点P′(5,1),求矩阵A.
C.选修4-4:坐标系与参数方程
在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.已知直线l的极坐标方程为ρcos(θ-
π
4
)=
2
,曲线C的参数方程为
x=2cosα
y=sinα
(α为参数),求曲线C截直线l所得的弦长.
D.选修4-5:不等式选讲
已知a,b,c都是正数,且abc=8,求证:log2(2+a)+log2(2+b)+log2(2+c)≥6.

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题:不等式选讲
(Ⅰ) 设a1,a2,a3均为正数,且a1+a2+a3=m,求证
1
a1
+
1
a2
+
1
a3
9
m

(Ⅱ) 已知a,b都是正数,x,y∈R,且a+b=1,求证:ax2+by2≥(ax+by)2

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知a,b,x,y都是正数,且a+b=1,求证:(ax+by)(bx-ay)≥xy.

查看答案和解析>>

同步练习册答案