精英家教网 > 高中数学 > 题目详情
如图,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=∠FAB=90°,
(1)证明:C,D,F,E四点共面;
(2)设AB=BC=BE,求二面角A-ED-B的大小。
解:(1)如图,延长DC交AB的延长线于点G,


延长FE交AB的延长线于G',同理可得
 

即G与G'重合
因此直线CD、EF相交于点G,即C,D,F,E四点共面。
(2)证明:设AB=1,则BC=BE=1,AD=2
如图,取AE中点M,连接BM,则BM⊥AE
又由已知得AD⊥平面ABEF
故AD⊥BM,即BM与平面ADE内两相交直线AD、AE都垂直,
所以BM⊥平面ADE,作MN⊥DE,垂足为N,连接BN
由三垂线定理知BN⊥ED,则∠BNM为二面角A-ED-B的平面角


所以二面角A-ED-B的大小为
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=∠FAB=90°,BC
.
1
2
AD
,BE
.
1
2
AF
,G,H分别为FA,FD的中点
(Ⅰ)证明:四边形BCHG是平行四边形;
(Ⅱ)C,D,F,E四点是否共面?为什么?
(Ⅲ)设AB=BE,证明:平面ADE⊥平面CDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=∠FAB=90°,BC
 
=
1
2
AD,BE
.
1
2
AF.
(1)求证:C、D、F、E四点共面;
(2)设AB=BE,求证:平面ADE⊥平面DCE;
(3)设AB=BC=BE,求二面角A-ED-B的余弦值.

查看答案和解析>>

科目:高中数学 来源:四川 题型:解答题

如图,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=∠FAB=90°,BC
.
1
2
AD
,BE
.
1
2
AF
,G,H分别为FA,FD的中点
(Ⅰ)证明:四边形BCHG是平行四边形;
(Ⅱ)C,D,F,E四点是否共面?为什么?
(Ⅲ)设AB=BE,证明:平面ADE⊥平面CDE.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,

BAD=∠FAB=90°,BCAD,BEAF.

(Ⅰ)证明:CDFE四点共面:

(Ⅱ)设AB=BC=BE,求二面角A-ED-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=∠FAB=90°,BCAD,BE∥AF.

(Ⅰ)证明:CDFE四点共面:

(Ⅱ)设AB=BC=BE,求二面角A-ED-B的大小.

查看答案和解析>>

同步练习册答案