精英家教网 > 高中数学 > 题目详情
17.|$\overrightarrow{a}$|=5,$\overrightarrow{b}$=(3,-4)且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则$\overrightarrow{a}$=(4,3)或(-4,-3).

分析 利用平面向量垂直的性质以及数量积公式解答.

解答 解:设$\overrightarrow{a}$=(x,y),因为|$\overrightarrow{a}$|=5,$\overrightarrow{b}$=(3,-4)且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=25}\\{3x-4y=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=3}\end{array}\right.$或$\left\{\begin{array}{l}{x=-4}\\{y=-3}\end{array}\right.$,
所以$\overrightarrow{a}$=(4,3)或(-4,-3);
故答案为:(4,3)或(-4,-3).

点评 本题考查了平面向量的数量积运算以及向量垂直的性质;考查了方程思想的运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知△ABC是正三角形,若$\overrightarrow{a}$=$\overrightarrow{AC}$-$λ\overrightarrow{AB}$与向量$\overrightarrow{AC}$的夹角大于90°,则实数λ的取值范围是(  )
A.(2,+∞)B.(-∞,-2)C.(-∞,-1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2-2ax+5(a>1),若f(x)在区间(-∞,2]上是减函数,且对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.M科技公司从45名男员工、30名女员工中按照分层抽样的方法组建了一个5人的科研小组.
(1)求某员工被抽到的概率及科研小组中男女员工的人数;
(2)这个科研小组决定选出两名员工做某项实验,方法是先从小组中选出1名员工做实验,该员工做完后,再从小组内剩下的员工中选一名员工做实验,求选出的两名员工中恰有一名女员工的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知不等式(2x+y)($\frac{a}{x}+\frac{1}{y}$)≥25对任意正实数x、y恒成立,则正实数a的最小值为(  )
A.16B.12C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知p:x2+mx+1=0有两个不相等的负实数根,q:方程4x2+(4m-2)x+1=0无实数根.
(1)若q为真,求实数m的取值范围;
(2)若p为真q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知圆C的圆心在直线3x+y-5=0上,并且经过原点和点A(3,-1).
(Ⅰ)求圆C的方程.
(Ⅱ)若直线l过点P(1,1)且截圆C所得的弦长为$\frac{{2\sqrt{21}}}{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,M,N分别为PA,BC的中点,且PD=AD=$\sqrt{2}$
(1)求证:MN∥平面PCD;
(2)求证:平面PAC⊥平面PBD.
(3)求三棱锥A-MBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知sinα+cosα∈[-$\sqrt{2}$,$\sqrt{2}$],且满足4sinαcosα-5sinα-5cosα=1,
(1)求sinα+cosα的值;
(2)求sin3α+cos3α的值.

查看答案和解析>>

同步练习册答案