分析 (1)令sinα+cosα=t换元,得到sinα•cosα,代入已知等式求得t,则sinα+cosα的值可求;
(2)展开立方和公式,则sin3α+cos3α的值可求.
解答 解:(1)令sinα+cosα=t($-\sqrt{2}≤t≤\sqrt{2}$),
两边平方得,1+2sinαcosα=t2,
∴4sinαcosα=2t2-2,
代入4sinαcosα-5sinα-5cosα=1,得
2t2-2-5t=1,即2t2-5t-3=0.
解得:t=3(舍),或t=-$\frac{1}{2}$,即sinα+cosα=$-\frac{1}{2}$;
(2)由(1)得,sinαcosα=$\frac{1}{2}({t}^{2}-1)$=$\frac{1}{2}(\frac{1}{4}-1)=\frac{1}{8}-\frac{1}{2}=-\frac{3}{8}$.
∴sin3α+cos3α=(sinα+cosα)(sin2α-sinαcosα+cos2α)
=(sinα+cosα)[(sinα+cosα)2-3sinαcosα]
=$-\frac{1}{2}$×$[(-\frac{1}{2})^{2}-3×(-\frac{3}{8})]$=$-\frac{11}{16}$.
点评 本题考查同角三角函数的基本关系式的应用,体现了方程思想和换元思想,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f′(2-x)1n2 | B. | 2-x•f′(2-x)1n2 | C. | -2-x•f′(2-x)1n2 | D. | -2-x•f′(2-x)1og22 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com