精英家教网 > 高中数学 > 题目详情
19.设y=f(2-x)可导,则y′等于(  )
A.f′(2-x)1n2B.2-x•f′(2-x)1n2C.-2-x•f′(2-x)1n2D.-2-x•f′(2-x)1og22

分析 根据复合函数的求导法则求导即可.

解答 解:设y=f(2-x)可导,则y′=f′(2-x)(2-x)′=f′(2-x)•2-xln2•(-x)′=-f′(2-x)•2-xln2,
故选:C.

点评 本题考查了复合函数的导数的运算法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知圆C的圆心在直线3x+y-5=0上,并且经过原点和点A(3,-1).
(Ⅰ)求圆C的方程.
(Ⅱ)若直线l过点P(1,1)且截圆C所得的弦长为$\frac{{2\sqrt{21}}}{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.列表,用五点法画出下列函数在[0,2π]上的图象
1、y=sinx+1
2、y=sin(-x)+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知sinα+cosα∈[-$\sqrt{2}$,$\sqrt{2}$],且满足4sinαcosα-5sinα-5cosα=1,
(1)求sinα+cosα的值;
(2)求sin3α+cos3α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x2-2mx+2m+1.
(I)若函数f(x)在区间(3m-1,2m+3)上是单调的,求实数m的取值范围;
(Ⅱ)若函数f(x)在区间[-1,3]上的最小值为-7,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求证:$\frac{1+sinα}{1-sinα}$=($\frac{1}{cosα}$+tanα)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)是定义在R上的奇函数,且是以4π为最小正周期的周期函数.
(1)若f(x)=cos(ωx+φ)(ω>0,φ∈[0,$\frac{π}{2}$]),求ω和φ的值;
(2)若α是第一象限的角,当sinα=$\frac{1}{3}$时,求f(16$\sqrt{2}$π•tanα)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知A、B两点的坐标,求$\overrightarrow{AB}$,$\overrightarrow{BA}$的坐标:
(1)A(1,3),B(-2,-5)
(2)A(0,-1),B(3,6)
(3)A(4,-7),B(2,1)
(4)A(0,0),B(4,-5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示,四棱锥P  ABCD的底面ABCD是平行四边形,BA=BD=$\sqrt{2}$,AD=2,PA=PD=$\sqrt{5}$,E,F分别是棱AD,PC的中点,二面角PADB为60°.
(1)证明:平面PBC⊥平面ABCD;
(2)求直线EF与平面PBC所成角的正弦值.

查看答案和解析>>

同步练习册答案