精英家教网 > 高中数学 > 题目详情
10.列表,用五点法画出下列函数在[0,2π]上的图象
1、y=sinx+1
2、y=sin(-x)+1.

分析 根据列表、描点、连线的基本步骤,画出三角函数在一个周期[0,2π]的大致图象即可.

解答 解:1、根据题意,函数y=sinx+1的周期是2π,在一个周期[0,2π]内,列表如下:

x
0
$\frac{π}{2}$π$\frac{3π}{2}$
y12101
在平面直角坐标系内,描出对应的点,再用平滑的曲线连接,得出函数的图象;
如图1所示;
2、根据题意,函数y=sin(-x)+1的周期是2π,在一个周期[0,2π]内,列表如下:

x

0
$\frac{π}{2}$π$\frac{3π}{2}$
y10121
在平面直角坐标系内,描出对应的点,再用平滑的曲线连接,得出函数的图象;
如图2所示.

点评 本题考查了三角函数的图象与性质的应用问题,解题时应根据画三角函数的图象的基本步骤画出图形,是基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.某网站体育版足球栏目发起了“射手的连续进球与射手在场上的区域位置的关系”的调查活动,在所有参与调查的人中,持“有关系”“无关系”“不知道”态度的人数如表所示:
  有关系 无关系 不知道
 40岁以下 800 450 200
 40岁以上(含40岁) 100 150 300
(1)在所有参与调查的人中,用分层抽样的方法抽取n个人,已知从持“有关系”态度的人中抽取45人,求n的值;
(2)在持“不知道”态度的人中,用分层抽样的方法抽取10人看作一个总体:
①从这10个人中选取3人,求至少一人在40岁以下的概率;
②从这10人中选取3人,若设40岁以下的人数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{1}{3}$x3-x2-3x+3,求
(1)函数在点(0,3)处的切线方程;
(2)在区间[-2,2]上的最大值、最小值
(3)极大值、极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知$\overrightarrow{a}$=(1,0,-1),$\overrightarrow{b}$=(-1,1,2)
①$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$夹角的余弦值为$\frac{5\sqrt{7}}{14}$;
②若k$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-2$\overrightarrow{b}$平行,则k=-$\frac{1}{2}$;
③若k$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$+3$\overrightarrow{b}$垂直,则k=$\frac{15}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=2x2和函数g(x)=$\frac{1}{2x}$,
(1)求f(1)的值;
(2)求g(1)的值;
(3)求f(1)•g(1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.y=(sinx-1)2+2的值域为[2,6],当y取最大值时,x=2kπ-$\frac{π}{2}$(k∈Z);当y取最小值时,x=2kπ+$\frac{π}{2}$(k∈Z),周期为2π,单调递增区间为[2kπ+$\frac{π}{2}$,2kπ+$\frac{3π}{2}$](k∈Z);单调递减区间为[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$](k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.|x-4|<2的解集是{x|2<x<6}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设y=f(2-x)可导,则y′等于(  )
A.f′(2-x)1n2B.2-x•f′(2-x)1n2C.-2-x•f′(2-x)1n2D.-2-x•f′(2-x)1og22

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知f(x)是反比例函数,且f(-4)=3,则f(x)的解析式是f(x)=$-\frac{12}{x}$(x≠0).

查看答案和解析>>

同步练习册答案