精英家教网 > 高中数学 > 题目详情
已知圆C的参数方程为
x=cosφ
y=sinφ
(φ为参数),直线l的极坐标方程为ρcos(θ+
π
4
)=1,则直线l与圆C的公共点的个数为
1
1
分析:先把直线与圆的参数方程化为普通方程,求出圆心到直线的距离d,只要比较d与r的大小即可.
解答:解:∵圆C的参数方程为
x=cosφ
y=sinφ
(φ为参数),消去参数φ得x2+y2=1,∴圆心C(0,0),半径r=1;
由直线l的极坐标方程为ρcos(θ+
π
4
)=1,展开得:
2
2
ρcosθ-
2
2
ρsinθ=1
,∴x-y-
2
=0

∴圆心C(0,0)到直线l的距离d=
|0-0-
2
|
2
=1
=r,
∴直线x-y-
2
=0
与圆x2+y2=1相切,
∴直线l与圆C的公共点的个数只有一个.
故答案为1.
点评:利用圆心到直线的距离d与圆的半径r的大小关系即可判断出直线与圆的位置关系是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C的参数方程为
x=
3
+2cosθ
y=2sinθ
(θ为参数),若P是圆C与y轴正半轴的交点,以圆心C为极点,x轴的正半轴为极轴建立极坐标系,求过点P的圆C的切线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程选讲选做题)已知圆C的参数方程为
x=cosθ
y=sinθ+2
(θ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ+ρcosθ=1,则直线l截圆C所得的弦长是
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-4:坐标系与参数方程:
已知圆C的参数方程为
x=2+2cosφ
y=2sinφ
 (φ为参数);
(1)把圆C的参数方程化成直角坐标系中的普通方程;
(2)以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,把(1)中的圆C的普通方程化成极坐标方程;设圆C和极轴正半轴的交点为A,写出过点A且垂直于极轴的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的参数方程为
x=cosα
y=1+sinα
(α为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ=1,(ρ≥0,0≤θ<2π)则直线l与圆C的交点的极坐标为
 

查看答案和解析>>

同步练习册答案