精英家教网 > 高中数学 > 题目详情

在直角坐标平面中,已知点, ,…, 其中n是正整数. 对平面上任一点, 记A1A0关于点P1的对称点, A2A1关于点P2的对称点, ┄, ANAN-1关于点PN的对称点.

   (1)求向量的坐标;

   (2)当点A0在曲线C上移动时, 点A2的轨迹是函数的图象,其中是以3为周期的周期函数,且当x∈(0,3)时,=lgx.求以曲线C为图象的函数在(1,4)上的解析式;

   (3)对任意偶数n,用n表示向量的坐标.

解:(1)法一: 设点A0(x,y), A1为A0关于点P1的对称点,A1的坐标为(2-x,4-y),   

 A2为A1关于点P2的对称点,A2的坐标为(2+x,4+y),  

=(2,4).

法二:=2,  ∴=(2,4)

(2) 法一∵=(2,4),

∴f(x)的图象由曲线C向右平移2个单位,再向上平移4个单位得到.因此,

曲线C是函数y=g(x)的图象,其中g(x)是以3为周期的周期函数,

且当x∈(-2,1]时,g(x)=lg(x+2)-4.于是, 当x∈(1,4)时, g(x)=lg(x-1)-4.

法二:设点A0(x,y), 则A2的坐标为(2+x,4+y)

∵点A2的轨迹是函数y=f(x)的图象,于是当0<x+2≤3时,有y+4=lg(x+2),

即当-2< x≤1时, g(x)=y=lg(x+2)-4. 

∴当x∈(1,4)时,g(x)=lg(x-1)-4.

(3) =, 由于,得

=2() =2((1,2)+(1,23)+…+(1,2n-1))

=2(,) = (n,)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标平面中,已知点P1(1,2),P2(2,22),P3(3,23),…,Pn(n,2n),其中n是正整数.对平面上任一点A0,记A1为A0关于点P1的对称点,A2为A1关于点P2的对称点,…,An为An-1关于点Pn的对称点.
(1)求向量
A0A2
的坐标;
(2)当点A0在曲线C上移动时,点A2的轨迹是函数y=f(x)的图象,其中f(x)是以3位周期的周期函数,且当x∈(0,3]时,f(x)=lgx.求以曲线C为图象的函数在(1,4]上的解析式;
(3)对任意偶数n,用n表示向量
A0An
的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标平面中,已知点P1(1,2),P2(2,22),P3(3,23),…,Pn(n,2n),其中n是正整数,对平面上任一点A0,记A1为A0关于点P1的对称点,A2为A1关于点P2的对称点,…,An为An-1关于点Pn的对称点.
(1)求向量
A0A2
的坐标;
(2)当点A0在曲线C上移动时,点A2的轨迹是函数y=f(x)的图象,其中f(x)是以3为周期的周期函数,且当x∈(0,3]时,f(x)=lgx.求以曲线C为图象的函数在(1,4]上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标平面中,已知点P(0,1),Q(2,3),对平面上任意一点B0,记B1为B0关于P的对称点,B2为B1关于Q的对称点,B3为B2关于P的对称点,B4为B3关于Q的对称点,…,Bi为Bi-1关于P的对称点,Bi+1为Bi关于Q的对称点,Bi+2为Bi+1关于P的对称点(i≥1,i∈N)….则
B0B10
=
(20,20)
(20,20)

查看答案和解析>>

科目:高中数学 来源:2008-2009学年上海市虹口区北郊高级中学高三(上)摸底数学试卷(解析版) 题型:解答题

在直角坐标平面中,已知点P1(1,2),P2(2,22),P3(3,23),…,Pn(n,2n),其中n是正整数,对平面上任一点A,记A1为A关于点P1的对称点,A2为A1关于点P2的对称点,…,An为An-1关于点Pn的对称点.
(1)求向量的坐标;
(2)当点A在曲线C上移动时,点A2的轨迹是函数y=f(x)的图象,其中f(x)是以3为周期的周期函数,且当x∈(0,3]时,f(x)=lgx.求以曲线C为图象的函数在(1,4]上的解析式.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省高三上学期期中考试数学文卷 题型:填空题

在直角坐标平面中,已知点,对平面上任意一点,记关于的对称点,关于的对称点,关于的对称点,关于的对称点,…,关于的对称点,关于的对称点,关于的对称点…。则       

 

查看答案和解析>>

同步练习册答案