精英家教网 > 高中数学 > 题目详情
已知点(cosθ,sinθ)到直线xsinθ+ycosθ-1=0的距离是
1
2
(0≤θ≤
π
2
)
,则θ的值为(  )
分析:由点到直线的距离公式可得|sin2θ|=
1
2
,由 0≤θ≤
π
2
,可得0≤2θ≤π,sin2θ≥0,故有 sin2θ=
1
2
,由此求得θ的值.
解答:解:由点到直线的距离公式可得点(cosθ,sinθ)到直线xsinθ+ycosθ-1=0的距离是
|cosθsinθ+sinθcosθ|
sin2θ+ cos2θ
=|sin2θ|=
1
2

0≤θ≤
π
2
,可得0≤2θ≤π,sin2θ≥0,∴|sin2θ|=sin2θ.
故有 sin2θ=
1
2
,∴2θ=
π
6
,或 2θ=
6
,即 θ=
π
12
,或θ=
12

故选 C.
点评:本题主要考查点到直线的距离公式的应用,根据三角函数的值求角,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知点F是抛物线C:y2=x的焦点,S是抛物线C在第一象限内的点,且|SF|=
5
4

(Ⅰ)求点S的坐标;
(Ⅱ)以S为圆心的动圆与x轴分别交于两点A、B,延长SA、SB分别交抛物线C于M、N两点;
①判断直线MN的斜率是否为定值,并说明理由;
②延长NM交x轴于点E,若|EM|=
1
3
|NE|,求cos∠MSN的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义非零向量
OM
=(a,b)
的“相伴函数”为f(x)=asinx+bcosx(x∈R),向量
OM
=(a,b)
称为函数f(x)=asinx+bcosx的“相伴向量”(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.
(1)设h(x)=cos(x+
π
6
)-2cos(x+a)(a∈R),求证:h(x)∈S;
(2)求(1)中函数h(x)的“相伴向量”模的取值范围;
(3)已知点M(a,b)(b≠0)满足:(a-
3
)2+(b-1)2=1
上一点,向量
OM
的“相伴函数”f(x)在x=x0处取得最大值.当点M运动时,求tan2x0的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年辽宁省高三上学期期中考试理科数学试卷(解析版) 题型:解答题

已知点F是抛物线C:的焦点,S是抛物线C在第一象限内的点,且|SF|=.

(Ⅰ)求点S的坐标;

(Ⅱ)以S为圆心的动圆与轴分别交于两点A、B,延长SA、SB分别交抛物线C于M、N两点;

①判断直线MN的斜率是否为定值,并说明理由;

②延长NM交轴于点E,若|EM|=|NE|,求cos∠MSN的值.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河北省高三第三次模拟考试理科数学试卷(解析版) 题型:解答题

(本小题满分12分)已知点F是抛物线C:的焦点,S是抛物线C在第一象限内的点,且|SF|=

(Ⅰ)求点S的坐标;

(Ⅱ)以S为圆心的动圆与轴分别交于两点A、B,延长SA、SB分别交抛物线C于M、N两点;

①判断直线MN的斜率是否为定值,并说明理由;

②延长NM交轴于点E,若|EM|=|NE|,求cos∠MSN的值.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年四川省高三2月月考数学理卷 题型:解答题

(本小题满分12分)

已知点F是抛物线C:的焦点,S是抛物线C在第一象限内的点,且|SF|=

(1)求点S的坐标;

(2)以S为圆心的动圆与轴分别交于两点A、B,延长SA、SB分别交抛物线C于M、N两点;

     ①判断直线MN的斜率是否为定值,并说明理由;

     ②延长NM交轴于点E,若|EM|=|NE|,求cos∠MSN的值。

 

 

查看答案和解析>>

同步练习册答案