精英家教网 > 高中数学 > 题目详情
7.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦点分别为F1、F2,记$c=\sqrt{{a^2}+{b^2}}$.P是直线$x=\frac{a^2}{c}$上一点,且PF1⊥PF2,|PF1|•|PF2|=4ab,则双曲线的离心率是$\sqrt{3}$.

分析 依题意,△PF1F2为直角三角形,利用勾股定理与双曲线的定义,结合|PF1|•|PF2|=4ab,即可求得双曲线的离心率.

解答 解:∵PF1⊥PF2,|F1F2|=2c,
∴点P($\frac{{a}^{2}}{c}$,m)在以原点为圆心,半径为c的圆上,
∴($\frac{{a}^{2}}{c}$)2+m2=c2,①
又|PF1|•|PF2|=|F1F2|•m=2cm=4ab,②
联立①②得:m2=c2-($\frac{{a}^{2}}{c}$)2=$\frac{4{a}^{2}({c}^{2}-{a}^{2})}{{c}^{2}}$,
整理可得:e4-4e2+3=0,解得:e2=3或e2=1(舍去)
∴双曲线的离心率e=$\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 本题考查双曲线的简单性质,通过方程组求得b=2a是关键,考查通过分析与转化解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知直线l1经过两点(-1,2),(-1,4),直线l2经过两点(0,1),(x-2,6),且l1∥l2,则x=(  )
A.2B.-2C.4D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知定义域为R的函数f(x)=$\frac{1-{3}^{x}}{a+{3}^{x+1}}$.
(1)若a=1,求证函数f(x)不是奇函数;
(2)若此函数是奇函数.
①判断并证明函数f(x)的单调性;
②对任意的正数x,不等式f[m(log3x)2+1]+f[-m(log3x)-2]>0取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若loga$\frac{3}{5}$<1(a>0且a≠1),则实数a的取值范围是(0,$\frac{3}{5}$)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图1,已知正方体ABCD-A1B1ClD1的棱长为a,动点M、N、Q分别在线段PM上.当三棱锥Q-BMN的俯视图如图2所示时,三棱锥Q-BMN的正视图面积等于(  )
A.$\frac{1}{2}$a2B.$\frac{1}{4}$a2C.$\frac{\sqrt{2}{a}^{2}}{4}$D.$\frac{\sqrt{3}{a}^{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的焦点分别为F1(-1,0),F2(1,0),且经过定点$P(1,\frac{{\sqrt{2}}}{2})$
(1)求椭圆C的方程;
(2)设直线y=$\frac{{\sqrt{2}}}{2}$(x+1)交椭圆C于A,B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.双曲线$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9}$=1上一点P到它的一个焦点的距离为12,则点P到另一个焦点的距离为2或22.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在三棱锥P-ABC中,PA=PB=$\sqrt{6}$,PA⊥PB,AB⊥BC,∠BAC=30°,平面PAB⊥平面ABC.
(1)求证:PA⊥平面PBC;
(2)求异面直线AB和PC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图是一个空间几何体的三视图,则该几体体的外接球的体积是(  )
A.$\frac{64\sqrt{2}}{3}$πB.$\frac{32\sqrt{2}}{3}$πC.$\frac{8\sqrt{2}}{3}$πD.

查看答案和解析>>

同步练习册答案