精英家教网 > 高中数学 > 题目详情
10.已知x>0,y>0,且x2-2xy+4y2=1.
(Ⅰ)求证:x+2y≤2;
(Ⅱ)求y的取值范围.

分析 (Ⅰ)x2-2xy+4y2=1,变形为(x-y)2+3y2=1,换元,再利用三角函数知识,即可证明;
(Ⅱ)由y=$\frac{sinθ}{\sqrt{3}}$,θ∈(0,$\frac{π}{2}$],即可求出y的取值范围.

解答 (Ⅰ)证明:x2-2xy+4y2=1,变形为(x-y)2+3y2=1,
∵x>0,y>0,令y=$\frac{sinθ}{\sqrt{3}}$,x-y=cosθ,θ∈(0,$\frac{π}{2}$].
则x=cosθ+$\frac{sinθ}{\sqrt{3}}$.
∴x+2y=cosθ+$\sqrt{3}$sinθ=2sin(θ+$\frac{π}{6}$),
∴x+2y≤2;
(Ⅱ)解:∵y=$\frac{sinθ}{\sqrt{3}}$,θ∈(0,$\frac{π}{2}$],
∴y的取值范围是(0,$\frac{\sqrt{3}}{3}$].

点评 本题考查了三角变换、配方法、三角函数的单调性、两角和差的正弦公式,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知直线l1:2x-2y+1=0,直线l2:x+by-3=0,若l1⊥l2,则b=1;若l1∥l2,则两直线间的距离为$\frac{7\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=$\left\{\begin{array}{l}{{3}^{x-2}(x<2)}\\{lo{g}_{3}({x}^{2}-1)(x≥2)}\end{array}\right.$,若f(a)=1,则a的值是(  )
A.1或2B.2C.1D.1或-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列说法不正确的是(  )
A.命题“若a>b,则ac>bc”是真命题
B.命题“若a2+b2=0,则a,b全为0”是真命题
C.命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”
D.命题“若a=0,则ab=0”的逆否命题是“若ab≠0,则a≠0”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.关于x的不等式x2-2ax-3a2<0(a>0)的解集为(x1,x2),且|x1-x2|=8,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若扇形的弧长为6cm,圆心角为2弧度,则扇形的面积为9cm2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在一张长为2a米,宽为a米(a>2)的矩形铁皮的四个角上,各剪去一个边长是x米(0<x≤1)的小正方形,折成一个无盖的长方体铁盒,设V(x)表示铁盒的容积.
(1)试写出V(x)的解析式;
(2)记y=$\frac{V(x)}{x}$,当x为何值时,y最小?并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示的多面体中,ABCD是菱形,BDEF是矩形,ED⊥平面ABCD,∠BAD=$\frac{π}{3}$,AD=2,DE=$\sqrt{3}$.
(Ⅰ)异面直线AE与DC所成的角余弦值;
(Ⅱ)求证平面AEF⊥平面CEF;
(Ⅲ)在线段AB取一点N,当二面角N-EF-C的大小为60°时,求|AN|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.直线2x+(1-a)y+2=0与直线ax-3y-2=0平行,则a=(  )
A.2或3B.-2或3C.-2D.3

查看答案和解析>>

同步练习册答案