精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=x2-alnx,a∈R.
(Ⅰ)若函数f(x)的导函数f′(x)在区间(1,+∞)上单调递增,求实数a的取值范围;
(Ⅱ)讨论函数f(x)的单调性;
(Ⅲ)当a>0时,函数f(x)的最小值记为g(a),证明:g(a)≤1.

分析 (Ⅰ)求出函数的导数,问题转化为2+$\frac{a}{{x}^{2}}$>0在(1,+∞)恒成立,求出a的范围即可;
(Ⅱ)求出f′(x),通过讨论a的范围,判断函数的单调区间即可;
(Ⅲ)求出g(a)=f($\sqrt{\frac{a}{2}}$)=$\frac{a}{2}$-$\frac{a}{2}$ln$\frac{a}{2}$,(a>0),令t=$\frac{a}{2}$,则t>0,则m(t)=t-tlnt,根据函数的单调性,求出m(t)≤1即可.

解答 解:(Ⅰ)函数f(x)=x2-alnx,定义域是(0,+∞),
f′(x)=2x-$\frac{a}{x}$,f″(x)=2+$\frac{a}{{x}^{2}}$
若f′(x)在区间(1,+∞)上单调递增,
则2+$\frac{a}{{x}^{2}}$>0在(1,+∞)恒成立,
∴a>(-2x2max
∴a>-2;
(Ⅱ)f′(x)=2x-$\frac{a}{x}$=$\frac{{2x}^{2}-a}{x}$,
a≤0时,f′(x)>0,f(x)在(0,+∞)递增,
a>0时,令f′(x)>0,解得:x>$\sqrt{\frac{a}{2}}$,
令f′(x)<0,解得:0<x<$\sqrt{\frac{a}{2}}$,
∴f(x)在(0,$\sqrt{\frac{a}{2}}$)递减,在($\sqrt{\frac{a}{2}}$,+∞)递增;
证明:(Ⅲ)由(Ⅱ)得g(a)=f($\sqrt{\frac{a}{2}}$)=$\frac{a}{2}$-$\frac{a}{2}$ln$\frac{a}{2}$,(a>0),
令t=$\frac{a}{2}$,则t>0,则m(t)=t-tlnt,m′(t)=-lnt,
令m′(t)>0,解得:0<t<1,令m′(t)<0,解得:t>1,
∴m(t)在(0,1)递增,在(1,+∞)递减,
m(t)max=m(1)=1,
∴m(t)≤1,
∴g(a)≤1.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,四棱锥P-ABCD中,底面ABCD是平行四边形,且PA⊥平面ABCD,PA=AB=AD=2,∠BAD=60°.
(Ⅰ)证明:平面PBD⊥平面PAC;
(Ⅱ)求平面APD与平面PBC所成二面角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,正方形ABCD与正方形ABEF构成一个$\frac{π}{3}$的二面角,将△BEF绕BE旋转一周.在旋转过程中,(  )
A.直线AC必与平面BEF相交
B.直线BF与直线CD恒成$\frac{π}{4}$角
C.直线BF与平面ABCD所成角的范围是[$\frac{π}{12}$,$\frac{π}{2}$]
D.平面BEF与平面ABCD所成的二面角必不小于$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知变量x与变量y有如表对应数据:
 x 1 2 3 4
 y $\frac{1}{2}$$\frac{3}{2}$ 
且y对x呈线性相关关系,求y对x的回归直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=1nx-a(x-1)2的单调递增区间是(0,$\frac{1+\sqrt{5}}{2}$)
(1)求实数a的值;
(2)证明:当x>1时,f(x)<x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求定义域:y=$\sqrt{lo{g}_{\frac{1}{2}}x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,AC⊥BC,CD⊥AB,DE⊥BC,垂足分别为C、D、E.若AC=6,DE=4,则CD的长为2$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.定义:分子为1且分母为正整数的分数叫做单位分数,我们可以把1拆分成多个不同的单位分数之和.例如:1=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{6}$,1=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{12}$,1=$\frac{1}{2}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$,…,依此拆分法可得1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{m}$+$\frac{1}{n}$+$\frac{1}{30}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$+$\frac{1}{132}$+$\frac{1}{156}$+$\frac{1}{182}$,其中m,n∈N*,则m-n=(  )
A.-2B.-4C.-6D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,在三棱锥A-BCD中,AB⊥底面BCD,BC⊥CD,AB=BC=CD=2.该三棱锥外接球的表面积等于12π.

查看答案和解析>>

同步练习册答案