精英家教网 > 高中数学 > 题目详情
14.已知点M(-2,2)在抛物线C:y2=2px(p>0)的准线上,记抛物线C的焦点为F,则直线MF的方程为(  )
A.x-2y+6=0B.x+2y-2=0C.2x-y+6=0D.2x+y+2=0

分析 由题意可知:抛物线的准线方程x=-$\frac{p}{2}$,则-$\frac{p}{2}$=-2,p=4,求得焦点F(2,0),利用直线的两点式,即可求得直线MF的方程.

解答 解:由点M(-2,2)在抛物线C:y2=2px(p>0)的准线上,则抛物线的准线方程x=-$\frac{p}{2}$,则-$\frac{p}{2}$=-2,p=4,
抛物线C:y2=8x,焦点坐标F(2,0),
直线MF的方程$\frac{y-2}{x+2}$=$\frac{0-2}{2+2}$,整理得:x+2y-2=0,
故选:B.

点评 本题考查抛物线的标准方程及简单几何性质,直线的两点式方程,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.函数y=sin(2x+$\frac{π}{12}$)的图象经过平移后所得图象关于点($\frac{π}{12}$,0)中心对称,这个平移变换可以是(  )
A.向左平移$\frac{π}{8}$个单位B.向左平移$\frac{π}{4}$个单位
C.向右平移$\frac{π}{8}$个单位D.向右平移$\frac{π}{4}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,∠BAD=90°,AD∥BC,PA=AB=BC=1,AD=2,E为PD的中点.
(1)求证:CD⊥平面PAC;
(2)求直线EC与平面PAC所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知A={2,4,5},B={1,3,5,7},则A∩B=(  )
A.{5}B.{2,4}C.{2,5}D.{2,4,5,6}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某几何体的三视图如图所示,则该几何体的表面积是(  )
A.$\frac{\sqrt{2}}{3}$πB.2$\sqrt{2}$+2πC.$\frac{2\sqrt{2}}{3}$πD.2$\sqrt{2}$+$\frac{3}{2}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设n为正整数,f(n)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$,计算得f(2)=$\frac{3}{2}$,f(4)>2,f(8)>$\frac{5}{2}$,f(16)>3,观察上述结果,按照上面规律,可以推测f(1024)>6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=\frac{a+lnx}{x}$,曲线f(x)在点(e,f(e))处的切线与直线y=e2x+e垂直.
(1)求a的值及f(x)的极值;
(2)是否存在区间$({t,t+\frac{2}{3}})(t>0)$,使函数f(x)在此区间上存在极值和零点?若存在,求实数t的取值范围,若不存在,请说明理由;
(3)若不等式x2f(x)>k(x-1)对任意x∈(1,+∞)恒成立,求整数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=|x|,则下列结论正确的是(  )
A.奇函数,在(-∞,0)上是减函数B.奇函数,在(-∞,0)上是增函数
C.偶函数,在(-∞,0)上是减函数D.偶函数,在(-∞,0)上是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=3sin(2x-$\frac{π}{3}$)的图象为C,如下结论中正确的是①②③.
①图象C关于直线x=$\frac{11}{12}$π对称;      
②函数f(x)在区间(-$\frac{π}{12}$,$\frac{5π}{12}$)内是增函数;
③图象C关于点($\frac{2π}{3}$,0)对称;   
④由y=3sin2x图象向右平移$\frac{π}{3}$个单位可以得到图象C.

查看答案和解析>>

同步练习册答案