精英家教网 > 高中数学 > 题目详情
7.设函数f(x)=|sin(x+$\frac{π}{3}$)|(x∈R),则f(x)(  )
A.周期函数,最小正周期为πB.周期函数,最小正周期为$\frac{π}{2}$
C.周期函数,最小正周期为2πD.非周期函数

分析 根据正弦函数的图象与性质,结合绝对值的意义,即可得出结论.

解答 解:根据正弦函数的图象与性质,结合绝对值的意义知,
函数f(x)=|sin(x+$\frac{π}{3}$)|(x∈R)是周期函数,且最小正周期为π.
故选:A.

点评 本题考查了正弦函数的图象与性质应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.一质点按规律s=2t3运动,则其在t=1时的瞬时速度为6m/s.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.数列{an}中,a1=1,当n≥2时,其前n项和为Sn,满足${S}_{n}^{2}$=an(Sn-$\frac{1}{2}$).
(Ⅰ)求证:数列{$\frac{1}{{S}_{n}}$}是等差数列,并求Sn的表达式;
(Ⅱ)设bn=$\frac{{S}_{n}}{2n+1}$,数列{bn}的前n项和为Tn,不等式Tn≥$\frac{1}{18}$(m2-5m)对所有的n∈N*恒成立,求正整数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求下列圆的标准方程:
(1)圆心是(4,-1),且过点(5,2);
(2)圆心在y轴上,半径长为5,且过点(3,-4);
(3)求过两点C(-1,1)和D(1,3),圆心在x轴上的圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=-2x+1(x∈[0,5])的最小、最大值分别为(  )
A.3,5B.-9,1C.1,9D.1,-9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\left\{\begin{array}{l}{e^x},x≥0\\ ax,x<0\end{array}$若方程f(-x)=f(x)有五个不同的实根,则实数a的取值范围(  )
A.(1,+∞)B.(e,+∞)C.(-∞,-1)D.(-∞,-e)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.随着经济社会的发展,消费者对食品安全的关注度越来越高,通过随机询问某地区110名居民在购买食品时是否看生产日期与保质期等内容,得到如下的列联表:
年龄与看生产日期与保质期列联表 单位:名
60岁以下60岁以上总计
看生产日期与保质期503080
不看生产日期与保质期102030
总计6050110
(1)从这50名60岁以上居民中按是否看生产日期与保质期采取分层抽样,抽取一个容量为5的样本,问样本中看与不看生产日期与保质期的60岁以上居民各有多少名?
(2)从(1)中的5名居民样本中随机选取两名作深度访谈,求选到看与不看生产日期与保质期的60岁以上居民各1名的概率;
(3)根据以上列联表,问有多大把握认为“年龄与在购买食品时看生产日期与保质期”有关?
附:下面的临界值表供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.△ABC的内角A,B,C的对边分别是a,b,c,满足a2+bc≤b2+c2,则角A的范围是(  )
A.$(0,\frac{π}{6}]$B.$(0,\frac{π}{3}]$C.$[\frac{π}{6},π)$D.$[\frac{π}{3},π)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$f(x)=\frac{1}{2}a{x^2}+lnx+bx$,其中a,b∈R.
(1)当b=1时,g(x)=f(x)-x在$x=\frac{{\sqrt{2}}}{2}$处取得极值,求函数f(x)的单调区间;
(2)若a=0时,函数f(x)有两个不同的零点x1,x2
①求b的取值范围;
②求证:$\frac{{{x_1}{x_2}}}{e^2}>1$.

查看答案和解析>>

同步练习册答案