精英家教网 > 高中数学 > 题目详情
已知x满足不等式(log2x)2-log2x2≤0,求函数y=4x-
1
2
-a•2x+
a2
2
+1
(a∈R)的最小值.
分析:根据指数的运算性质,我们可将函数y=4x-
1
2
-a•2x+
a2
2
+1
(a∈R)的解析式化为y=
1
2
(2x-a)2+1
,由x满足不等式(log2x)2-log2x2≤0,我们求出满足条件的x的取值范围,结合二次函数在定区间了最小值的确定方法,我们易求出函数y=4x-
1
2
-a•2x+
a2
2
+1
(a∈R)的最小值.
解答:解:解不等式 (log2x)2-log2x2≤0,
得 1≤x≤4,
所以 2≤2x≤16
y=4x-
1
2
-a•2x+
a2
2
+1=
1
2
(2x)2-a•2x+
a2
2
+1=
1
2
(2x-a)2+1

当a<2时,ymin=
1
2
(2-a)2+1

当2≤a≤16时,ymin=1
当a>16时,ymin=
1
2
(16-a)2+1
点评:本题考查的知识点是对数函数的图象与性质,指数的运算性质,二次函数在定区间上的最值问题,其中根据已知求出满足条件的x的取值范围,进而求出2x的取值范围,将问题转化为二次函数在定区间上的最值问题,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)选修4-2:矩阵与变换
已知矩阵A=
33
cd
,若矩阵A属于特征值6的一个特征向量为
a1
=
1
1
,属于特征值1的一个特征向量为
a2
=
3
-2
,求矩阵A.
(2)选修4-4:坐标与参数方程
以直角坐标系的原点为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位.已知直线l的极坐标方程为psin(θ-
π
3
)=6,圆C的参数方程为
x=10cosθ
y=10sinθ
,(θ为参数),求直线l被圆C截得的弦长.
(3)选修4-5:不等式选讲
已知实数a,b,c,d满足a+b+c+d=3,a2+2b2+3c2+6d2=5试求a的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.
(1)选修4-2:矩阵与变换
已知点A(1,0),B(2,2),C(3,0),矩阵M表示变换”顺时针旋转45°”.
(Ⅰ)写出矩阵M及其逆矩阵M-1
(Ⅱ)请写出△ABC在矩阵M-1对应的变换作用下所得△A1B1C1的面积.
(2)选修4-4:坐标系与参数方程
过P(2,0)作倾斜角为α的直线l与曲线E:
x=cosθ
y=
2
2
sinθ
(θ为参数)交于A,B两点.
(Ⅰ)求曲线E的普通方程及l的参数方程;
(Ⅱ)求sinα的取值范围.
(3)(选修4-5 不等式证明选讲)
已知正实数a、b、c满足条件a+b+c=3,
(Ⅰ)求证:
a
+
b
+
c
≤3

(Ⅱ)若c=ab,求c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.(极坐标与参数方程选讲选做题)设曲线C的参数方程为
x=2+3cosθ
y=-1+3sinθ
(θ为参数),直线l的方程为x-3y+2=0,则曲线C上的动点P(x,y)到直线l距离的最大值为
3+
7
10
10
3+
7
10
10

B.(不等式选讲选做题)若存在实数x满足不等式|x-3|+|x-5|<m2-m,则实数m的取值范围为
(-∞,-1)∪(2,+∞)
(-∞,-1)∪(2,+∞)

C.(几何证明选讲选做题)如图,PC切⊙O于点C,割线PAB经过圆心O,弦CD⊥AB于点E.已知⊙O的半径为3,PA=2,则PC=
4
4
.OE=
5
9
5
9

查看答案和解析>>

科目:高中数学 来源:2011-2012学年安徽省淮北市高三第一次模拟考试文科数学 题型:选择题

已知O<m<l<n,关于x的不等式O<mx-nx<1的解集是{x|-l<x<O},则m,n满足的关系是    (  )

  A、     B、

  C.    D、m,n的关系不能确定

 

查看答案和解析>>

科目:高中数学 来源:2012年陕西省西安市西工大附中高考数学七模试卷(理科)(解析版) 题型:填空题

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.(极坐标与参数方程选讲选做题)设曲线C的参数方程为(θ为参数),直线l的方程为x-3y+2=0,则曲线C上的动点P(x,y)到直线l距离的最大值为   
B.(不等式选讲选做题)若存在实数x满足不等式|x-3|+|x-5|<m2-m,则实数m的取值范围为   
C.(几何证明选讲选做题)如图,PC切⊙O于点C,割线PAB经过圆心O,弦CD⊥AB于点E.已知⊙O的半径为3,PA=2,则PC=    .OE=   

查看答案和解析>>

同步练习册答案