5£®ÒÑÖª2$\overrightarrow{a}$+$\overrightarrow{b}$=£¨0£¬-5£¬10£©£¬$\overrightarrow{c}$=£¨1£¬-2£¬-2£©£¬$\overrightarrow{a}$•$\overrightarrow{c}$=4£¬|$\overrightarrow{b}$|=12£¬ÔòÒÔ$\overrightarrow{b}$£¬$\overrightarrow{c}$Ϊ·½ÏòÏòÁ¿µÄÁ½Ö±ÏߵļнÇΪ$\frac{¦Ð}{3}$£®

·ÖÎö ÓÉÒÑÖªÏòÁ¿2$\overrightarrow{a}$+$\overrightarrow{b}$£¬$\overrightarrow{c}$µÄ×ø±ê£¬½áºÏ$\overrightarrow{a}$•$\overrightarrow{c}$=4ÇóµÃ$\overrightarrow{b}•\overrightarrow{c}$£¬ÔÚÇó³ö$|\overrightarrow{c}|$£¬ÓÉÁ½ÏòÁ¿µÄ¼Ð½Ç¹«Ê½ÇóµÃÒÔ$\overrightarrow{b}$£¬$\overrightarrow{c}$Ϊ·½ÏòÏòÁ¿µÄÁ½Ö±Ïߵļнǣ®

½â´ð ½â£º¡ß2$\overrightarrow{a}$+$\overrightarrow{b}$=£¨0£¬-5£¬10£©£¬$\overrightarrow{c}$=£¨1£¬-2£¬-2£©£¬
¡à$£¨2\overrightarrow{a}+\overrightarrow{b}£©•\overrightarrow{c}=2\overrightarrow{a}•\overrightarrow{c}+\overrightarrow{b}•\overrightarrow{c}=0¡Á1+10-20=-10$£¬
ÓÖ$\overrightarrow{a}$•$\overrightarrow{c}$=4£¬¡à$\overrightarrow{b}•\overrightarrow{c}=-18$£®
¡ß$\overrightarrow{c}$=£¨1£¬-2£¬-2£©£¬¡à$|\overrightarrow{c}|=\sqrt{{1}^{2}+£¨-2£©^{2}+£¨-2£©^{2}}=3$£¬
ÓÖ|$\overrightarrow{b}$|=12£¬
ÉèÒÔ$\overrightarrow{b}$£¬$\overrightarrow{c}$Ϊ·½ÏòÏòÁ¿µÄÁ½Ö±ÏߵļнÇΪ¦È£¨0$¡Ü¦È¡Ü\frac{¦Ð}{2}$£©£¬
Ôòcos¦È=$|\frac{\overrightarrow{b}•\overrightarrow{c}}{|\overrightarrow{b}|•|\overrightarrow{c}|}|$=|$\frac{-18}{12¡Á3}$|=$\frac{1}{2}$£®
¡à$¦È=\frac{¦Ð}{3}$£®
¹Ê´ð°¸Îª£º$\frac{¦Ð}{3}$£®

µãÆÀ ±¾Ì⿼²éÊýÁ¿»ý±íʾÁ½¸öÏòÁ¿µÄ¼Ð½Ç£¬Èç¹ûÒÑÖªÏòÁ¿µÄ×ø±ê£¬ÇóÏòÁ¿µÄ¼Ð½Ç£¬ÎÒÃÇ¿ÉÒÔ·Ö±ðÇó³öÁ½¸öÏòÁ¿µÄ×ø±ê£¬½øÒ»²½Çó³öÁ½¸öÏòÁ¿µÄÄ£¼°ËûÃǵÄÊýÁ¿»ý£¬È»ºó´úÈ빫ʽcos¦È=$\frac{\overrightarrow{a}•\overrightarrow{b}}{\left|\overrightarrow{a}\right|•\left|\overrightarrow{b}\right|}$¼´¿ÉÇó½â£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÔÚ¹«±È´óÓÚ1µÄµÈ±ÈÊýÁÐ{an}ÖУ¬a2=6£¬a1+a2+a3=26£»Éècn=an+bn£¬ÇÒÊýÁÐ{cn}Êǹ«²îΪ2µÄµÈ²îÊýÁУ¬b1=a1£®
£¨1£©ÇóÊýÁÐ{an}ºÍ{cn}µÄͨÏʽ£»
£¨2£©ÇóÊýÁÐ{bn}µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÔڵȲîÊýÁÐ{an}ÖУ¬an=41-2n£¬Ôòµ±ÊýÁÐ{an}µÄǰnÏîºÍSnÈ¡×î´óֵʱnµÄÖµµÈÓÚ£¨¡¡¡¡£©
A£®21B£®20C£®19D£®18

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{-1£¬x¡Ü-1}\\{x£¬-1£¼x£¼1}\\{1£¬x¡Ý1}\end{array}\right.$£¬º¯Êýg£¨x£©=ax2-x+1£¬Èôº¯Êýy=f£¨x£©-g£¨x£©Ç¡ºÃÓÐ2¸ö²»Í¬Áãµã£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨0£¬+¡Þ£©B£®£¨-¡Þ£¬0£©¡È£¨2£¬+¡Þ£©C£®£¨-¡Þ£¬-$\frac{1}{2}$£©¡È£¨1£¬+¡Þ£©D£®£¨-¡Þ£¬0£©¡È£¨0£¬1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®½â²»µÈʽ£º3-2|4x+1|£¾0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=log${\;}_{\frac{1}{2}}$£¨x-1£©+1£®
£¨1£©Èôf£¨x£©=3£¬ÇóxµÄÖµ£»
£¨2£©Èôf£¨x£©¡Ý1£¬ÇóxµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©ÎªÅ×ÎïÏßy2=2px£¨p£¾0£©ÉÏλÓÚxÖáÁ½²àµÄÁ½µã£®
£¨1£©Èôy1y2=-2q£¬Ö¤Ã÷Ö±ÏßABºã¹ýÒ»¸ö¶¨µã£»
£¨2£©Èôp=2£¬¡ÏAOB£¨OÊÇ×ø±êÔ­µã£©Îª¶Û½Ç£¬ÇóÖ±ÏßABÔÚxÖáÉϵĽؾàµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªµÈ±ÈÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÈôS1£¬2S2£¬3S3³ÉµÈ²îÊýÁУ¬ÇÒS4=$\frac{40}{27}$£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÇóÖ¤£ºSn£¼$\frac{3}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªº¯Êý$f£¨x£©=\sqrt{3}sin£¨2x-\frac{¦Ð}{6}£©-2{sin^2}£¨x-\frac{¦Ð}{12}£©$£®
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄÖÜÆÚ¼°ÔöÇø¼ä£»
£¨¢ò£©Èô $-\frac{¦Ð}{12}¡Üx¡Ü\frac{¦Ð}{3}$£¬Çóº¯Êýf£¨x£©µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸