精英家教网 > 高中数学 > 题目详情
三棱锥P-ABC的三个侧面两两互相垂直,求证:顶点P在底面的射影O是底面三角形ABC的垂心.
分析:三棱锥P-ABC,在面PAB中任取一点M,过M作MD⊥PA,ME⊥PB,可证得PC⊥平面PAB,同理可证,PA⊥平面PBC,PB⊥平面PAC;再利用线面垂直的判定定理与性质定理即可证得顶点P在底面的射影O是底面三角形ABC的垂心.
解答:证明:三棱锥P-ABC,在面PAB中任取一点M,过M作MD⊥PA,ME⊥PB,
∵三棱锥P-ABC的三个侧面两两互相垂直,
∴MD⊥平面PAC,ME⊥平面PBC,
∴MD⊥PC,ME⊥PC,MD∩ME=M,
∴PC⊥平面PAB,同理可证,PA⊥平面PBC,PB⊥平面PAC;
∵顶点P在底面的射影为O,
连接CO并延长交AB于C′,连接AO并延长交BC于A′,
∵PC⊥平面PAB,AB?平面ABC,
∴PC⊥AB,又PO⊥底面ABC,
∴PO⊥AB,又PC∩PO=P,
∴AB⊥平面PCC′,
∴AB⊥CC′;
同理可证,BC⊥AA′,
∴O是底面三角形的垂心.
点评:本题考查平面与平面垂直的性质,突出考查线面垂直的判定与线面垂直的性质的综合应用,考查作图、推理与证明的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设三棱锥P-ABC的顶点P在平面ABC上的射影是H,给出以下命题:
①若PA,PB,PC两两互相垂直,则H是△ABC的垂心
②若∠ABC=90°,H是斜边AC上的中点,则PA=PB=PC
③若PA=PB=PC,则H是△ABC的外心
④若P到△ABC的三边的距离相等,则H为△ABC的内心
其中正确命题的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

三棱锥P-ABC的三条侧棱PA、PB、PC两两垂直,PA=1,PB=2,PC=3,且这个三棱锥的顶点都在同一个球面上,则这个球面的表面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱锥P-ABC中,给出下列四个命题:
①如果PA⊥BC,PB⊥AC,那么点P在平面ABC内的射影是△ABC的垂心;
②如果点P到△ABC的三边所在直线的距离都相等,那么点P在平面ABC内的射影是△ABC的内心;
③如果棱PA和BC所成的角为60?,PA=BC=2,E、F分别是棱PB、AC的中点,那么EF=1;
④三棱锥P-ABC的各棱长均为1,则该三棱锥在任意一个平面内的射影的面积都不大于
1
2

⑤如果三棱锥P-ABC的四个顶点是半径为1的球的内接正四面体的顶点,则P与A两点间的球面距离为π-arccos
1
3

其中正确命题的序号是
①④⑤
①④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•江西模拟)三棱锥P-ABC的高|PO|=2
2
,底面边长分别为3,4,5,Q点在底边上,且斜高PQ的数值为3,这样的Q点最多有(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在三棱锥P-ABC中,给出下列四个命题:
①如果PA⊥BC,PB⊥AC,那么点P在平面ABC内的射影是△ABC的垂心;
②如果点P到△ABC的三边所在直线的距离都相等,那么点P在平面ABC内的射影是△ABC的内心;
③如果棱PA和BC所成的角为60?,PA=BC=2,E、F分别是棱PB、AC的中点,那么EF=1;
④三棱锥P-ABC的各棱长均为1,则该三棱锥在任意一个平面内的射影的面积都不大于
1
2

⑤如果三棱锥P-ABC的四个顶点是半径为1的球的内接正四面体的顶点,则P与A两点间的球面距离为π-arccos
1
3

其中正确命题的序号是______.

查看答案和解析>>

同步练习册答案