精英家教网 > 高中数学 > 题目详情
16.设数列{an}的前n项和为Sn,且满足Sn=2an-1(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列$\left\{{\frac{2n-1}{a_n}}\right\}$的前n项和Tn
(Ⅲ)数列{bn}满足bn+1=an+bn(n∈N*),且b1=3.若不等式${log_2}({b_n}-2)<\frac{3}{16}{n^2}+t$对任意n∈N*恒成立,求实数t的取值范围.

分析 (I)利用递推关系与等比数列的通项公式即可得出;
(II)利用“错位相减法”、等比数列的前n项和公式即可得出;
(III)利用“累加求和”可得bn,由不等式${log_2}({b_n}-2)<\frac{3}{16}{n^2}+t$,化为t>$-\frac{3}{16}{n}^{2}$+n-1,再利用二次函数的单调性即可得出.

解答 解:(I)∵Sn=2an-1(n∈N*),∴当n=1时,a1=S1=2a1-1,解得a1=1.
当n≥2时,an=Sn-Sn-1=2an-1-(2an-1-1)=2an-2an-1,化为an=2an-1
∴数列{an}是等比数列,首项为1,公比为2.
∴an=2n-1
(II)$\frac{2n-1}{{a}_{n}}$=$\frac{2n-1}{{2}^{n-1}}$.
∴数列$\left\{{\frac{2n-1}{a_n}}\right\}$的前n项和Tn=$1+\frac{3}{2}+\frac{5}{{2}^{2}}$+…+$\frac{2n-1}{{2}^{n-1}}$,
∴$\frac{1}{2}{T}_{n}$=$\frac{1}{2}+\frac{3}{{2}^{2}}+$…+$\frac{2n-3}{{2}^{n-1}}$+$\frac{2n-1}{{2}^{n}}$,
∴$\frac{1}{2}{T}_{n}$=1+2$(\frac{1}{2}+\frac{1}{{2}^{2}}+…+\frac{1}{{2}^{n-1}})$-$\frac{2n-1}{{2}^{n}}$=$2×\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$-1-$\frac{2n-1}{{2}^{n}}$=3-$\frac{2n+3}{{2}^{n}}$,
∴Tn=6-$\frac{2n+3}{{2}^{n-1}}$.
(III)∵数列{bn}满足bn+1=an+bn(n∈N*),且b1=3.
∴bn+1-bn=an=2n-1
∴bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=2n-2+2n-3+…+1+3
=$\frac{{2}^{n-1}-1}{2-1}$+3
=2n-1+2.
不等式${log_2}({b_n}-2)<\frac{3}{16}{n^2}+t$,
化为n-1<$\frac{3}{16}{n}^{2}$+t,
∴t>$-\frac{3}{16}{n}^{2}$+n-1,
令g(n)=$-\frac{3}{16}{n}^{2}$+n-1=-$\frac{3}{16}$$(n-\frac{8}{3})^{2}$+$\frac{1}{3}$≤g(3)=$\frac{5}{16}$,
∴$t>\frac{5}{16}$.
∴实数t的取值范围是$(\frac{5}{16},+∞)$.

点评 本题考查了“错位相减法”、等比数列与等差数列的通项公式及其前n项和公式、递推关系的应用、二次函数的单调性、对数的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=x5-m是定义在[-3-m,7-m]上的奇函数,则f(m)=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设实数a,b满足2a+b=9.
(1)若|9-b|+|a|<3,求a的取值范围;
(2)求|3a-b|+|a-2b|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在一段时间内,某种商品的价格x(单位:元)与需求量y(单位:件)之间的一组数据如表:
 价格 1416  1820  22
 需求量12  1012  5
如果y与x具有线性相关关系,求y与x的回归直线方程.$\frac{∧}{b}$
参考公式:$\frac{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n({\overline{x})}^{2}}$,$\widehat{a}=\overline{y}-\widehat{b}\overline{x}$;直线方程$\widehat{y}=\widehat{b}x+\widehat{a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆E的中心在坐标原点O,焦点在坐标轴上,且经过M(2,1),N(2$\sqrt{2}$,0)两点.
(1)求椭圆E的方程;
(2)已知定点Q(0,2),P点为椭圆上的动点,求|PQ|最大值及相应的P点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数$f(x)=x+\frac{m}{x}$,且此函数图象过点(1,5),则实数m的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.下列幂函数中:①$y={x^{\frac{1}{2}}}$;②y=x-2;③$y={x^{\frac{4}{3}}}$;④$y={x^{\frac{1}{3}}}$;其中既是偶函数,又在区间(0,+∞)上单调递增的函数是③.(填相应函数的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=sin(\sqrt{3}x+ϕ)(0<ϕ<π)$,f′(x)为f(x)的导函数.若g(x)=f(x)+f′(x)为奇函数,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.平行于向量(1,2)的光线,从中心在原点的椭圆的焦点F1(-1,0)射到椭圆上一点M,被椭圆反射后经过另一焦点F2和点P(3,1),求椭圆标准方程.

查看答案和解析>>

同步练习册答案