精英家教网 > 高中数学 > 题目详情
13.若变量x,y满足的约束条件$\left\{\begin{array}{l}{x+y≤6}\\{x-3y≤-2}\\{x≥1}\end{array}\right.$,求z=2x+3y的最小值.

分析 由约束条件作出可行域,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x+y≤6}\\{x-3y≤-2}\\{x≥1}\end{array}\right.$作出可行域,
联立$\left\{\begin{array}{l}{x=1}\\{x-3y=-2}\end{array}\right.$,解得:A(1,1).
化目标函数z=2x+3y为y=-$\frac{2}{3}x+\frac{z}{3}$,
由图可知,当直线y=-$\frac{2}{3}x+\frac{z}{3}$过A(1,1)时,直线在y轴上的截距最小,z有最小值为2×1+3×1=5.

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.函数y=log(x+1)(2-x)的定义域为{x|-1<x<2且x≠0}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知sinα=$\frac{2\sqrt{5}}{5}$,α∈($\frac{π}{2}$,π).
(1)求cosα及cos2α;
(2)求$\frac{2cos(\frac{π}{2}+α)+cos(π-α)}{sin(\frac{π}{2}-α)+3sin(π+α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.证明:函数f(x)=x${\;}^{\frac{2}{3}}$在[0,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数y=${(\frac{1}{2})}^{{x}^{2}-2x+2}$的递减区间是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合P={x|x2+x-6=0},Q={x|ax+1=0}满足Q?P,求a所取的一切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设A={x|x2-3x+2=0},B={x|2x2-ax+2=0}.
(1)若A⊆B,求实数a的取值范围;
(2)若B⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知logax=2,logbx=1,logcx=4,则logabcx=(  )
A.$\frac{4}{7}$B.$\frac{2}{7}$C.$\frac{7}{2}$D.$\frac{7}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设有两个命题p:不等式$\frac{{e}^{x}}{4}$+$\frac{1}{{e}^{x}}$>a的解集为R;q:函数f(x)=-(7-3a)x在R上是减函数,如果这两个命题中有且只有一个真命题,那么实数a的取值范围是(  )
A.1≤a<2B.2<a≤$\frac{7}{3}$C.2≤a<$\frac{7}{3}$D.1<a≤2

查看答案和解析>>

同步练习册答案