精英家教网 > 高中数学 > 题目详情
17.已知$sin(α+\frac{π}{2})=\frac{3}{5}$,$α∈(-\frac{π}{2},0)$,则tanα的值为$-\frac{4}{3}$.

分析 根据诱导公式,可得cosα=$\frac{3}{5}$,进而利用同角三角函数的基本关系公式,可得答案.

解答 解:∵$sin(α+\frac{π}{2})=\frac{3}{5}$,
∴cosα=$\frac{3}{5}$,
∵$α∈(-\frac{π}{2},0)$,
∴sinα=-$\sqrt{1-{cos}^{2}α}$=-$\frac{4}{5}$,
∴tanα=$\frac{sinα}{cosα}$=$-\frac{4}{3}$,
故答案为:$-\frac{4}{3}$.

点评 本题考查的知识点是诱导公式,同角三角函数的基本关系公式,难度基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.三棱锥P-ABC中,面PBC和面ABC都是边长为12的正三角形,平面PBC和平面ABC所成二面角是60°,求点P到平面ABC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知变量x,y之间具有线性相关关系,其散点图如图所示,则其回归方程可能为(  )
A.$\stackrel{∧}{y}$=1.5x+2B.$\stackrel{∧}{y}$=-1.5x+2C.$\stackrel{∧}{y}$=1.5x-2D.$\stackrel{∧}{y}$=-1.5x-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.全集U={-1,0,1,2,3,4,5,6 },A={3,4,5 },B={1,3,6 },那么集合{ 2,-1,0}是(  )
A.$\frac{π}{3}$B.$\frac{3}{5}$C.UA∩∁UBD.$-\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=x2•sin(x-π),则其在区间[-π,π]上的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某同学在利用“五点法”作函数f(x)=Asin(ωx+ϕ)+t(其中A>0,$ω>0,|ϕ|<\frac{π}{2}$)的图象时,列出了如表格中的部分数据.
x$-\frac{π}{4}$        $\frac{π}{12}$        $\frac{5π}{12}$$\frac{3π}{4}$$\frac{13π}{12}$                     
ωx+ϕ0$\frac{π}{2}$π$\frac{3π}{2}$
f(x)2             6                2          -22
(1)请将表格补充完整,并写出f(x)的解析式.
(2)若$x∈[-\frac{5π}{12},\frac{π}{4}]$,求f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知实数x,y满足条件$\left\{\begin{array}{l}x+y-2≥0\\ x-y≤0,y≤3\end{array}$则z=2x+y的最大值是9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若过点(-2,0)的直线l被圆C:$\left\{\begin{array}{l}{x=4+2\sqrt{3}cosθ}\\{y=2\sqrt{3}sinθ}\end{array}\right.$(θ为参数)所截得的线段的长等于2$\sqrt{3}$,则直线l的倾斜角的取值集合为{$\frac{π}{6}$,$\frac{5π}{6}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在柱坐标系中,点P的坐标为(2,$\frac{π}{3}$,1),则点P的直角坐标为(  )
A.($\sqrt{3}$,-1,1)B.($\sqrt{3}$,1,1)C.(-1,$\sqrt{3}$,1)D.(1,$\sqrt{3}$,1)

查看答案和解析>>

同步练习册答案