精英家教网 > 高中数学 > 题目详情

(1)求g(x)的单调区间和最小值;

(2)讨论g(x)与的大小关系;

(3)求a的范围,使得g(a)-g(x)<对任意x>0成立.

答案:
解析:

  解:(1)由题设知

  ∴ 2分

  令0得=1,

  当∈(0,1)时,<0,故(0,1)是的单调减区间.

  当∈(1,+∞)时,>0,故(1,+∞)是的单调递增区间,因此,=1是的唯一值点,且为极小值点,从而是最小值点,所以最小值为 4分

  (2)

  设,则

  , 6分

  当时,

  当

  因此,内单调递减,

  当时,

  即 8分

  (3)由(1)知的最小值为1,所以,

  ,对任意,成立

  即从而得. 12


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈(0,e]时,f(x)=ax+lnx(其中e是自然对数的底数,a∈R).
(1)求f(x)的解析式;
(2)设a=-1,g(x)=-
lnx
x
,求证:当x∈(0,e]时,f(x)<g(x)+
1
2
恒成立;
(3)是否存在负数a,使得当x∈(0,e]时,f(x)的最大值是-3?如果存在,求出实数a的值;如果不存在,请说明理由.
理科选修.

查看答案和解析>>

科目:高中数学 来源:福建省南安一中2012届高三上学期期中考试数学理科试题 题型:044

设函数f(x)定义在(0,+∞)上,f(1)=0,导函数

(1)求g(x)的单调区间和最小值;

(2)讨论g(x)与的大小关系;

(3)是否存在x0>0,使得对任意x>0成立?若存在,求出x0的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数=,x∈[0,1].

       (1)求的单调区间和值域;

       (2)设a≥1,函数g(x)=x3-3a2x-2a,x∈[0,1],若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范围.

      

查看答案和解析>>

科目:高中数学 来源:山东省模拟题 题型:解答题

已知二次函数g(x)对任意实数x都满足g(x-1)+g(1-x)=x2-2x-1,且g(1)=-1,f(x)=g(x+)+mlnx+(m∈R,x>0),
(1)求g(x)的表达式;
(2)若x>0使f(x)≤0成立,求实数m的取值范围;
(3)设1<m≤e,H(x)=f(x)-(m+1)x,证明:对x1,x2∈[1,m],恒有|H(x1)-H(x2)|<1.

查看答案和解析>>

同步练习册答案