精英家教网 > 高中数学 > 题目详情
已知向量
a
=(x,2),
b
=(4,y),
c
=(x,y)(x>0,y>0),若
a
b
,则|
c
|的最小值为
 
分析:由已知中
a
=(x,2),
b
=(4,y),(x>0,y>0)
a
b
,我们可以根据两个向量平行,坐标交叉相乘差为0,求出xy=8,由|
c
|
=
x2+y2
,结合基本不等式即可求出答案.
解答:解:∵
a
=(x,2),
b
=(4,y),(x>0,y>0)

a
b

则xy=8
又∵
c
=(x,y)

|
c
|
=
x2+y2
2xy
=4
|
c
|
的最小值为4
故答案为:4
点评:本题考查的知识点是平面向量共线(平行)的坐标表示,向量的模,基本不等式的应用,其中根据两个向量平行,坐标交叉相乘差为0,求出xy=8是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(x,-2),
b
=(3,6),且
a
b
共线,则|
a
+
b
|
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(x,2),
b
=(l,y),其中x,y≥0.若
a
b
≤4,则y-x的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•潍坊二模)已知向量
a
=(x,-2),
b
=(y,1),其中x,y都是正实数,若
a
b
,则t=x+2y的最小值是
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(x,-2,6)和
b
=(1,y,-3)平行,那么x=
-2
-2
,y=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(x,2),
b
=(1,x),若
a
b
,则x=(  )

查看答案和解析>>

同步练习册答案