精英家教网 > 高中数学 > 题目详情

.(本小题满分14分)

某创业投资公司拟投资开发某种新能源产品,估计能获得10万元~1000万元的投资收 

益.现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单

位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.现

有两个奖励方案的函数模型:(1);(2).试问这两个函数模

型是否符合该公司要求,并说明理由.

 

 

【答案】

 

解:设奖励函数模型为yf(x),由题意可知该公司对函数模型应满足下列条件:

x∈[10,1000]时,①f(x)是增函数;②f(x)≤9恒成立;③恒成立.

①对于函数模型

x∈[10,1000]时,f(x)是增函数,则

所以f(x)≤9恒成立.                             …………………………3分 

因为函数在[10,1000]上是减函数,所以

从而不恒成立.

故该函数模型不符合公司要求.                   …………………………7分

②对于函数模型f(x)=4lgx-3:

x∈[10,1000]时,f(x)是增函数,则

所以f(x)≤9恒成立.                             …………………………9分                                        

g(x)=4lgx-3,则.

x≥10时,

所以g(x)在[10,1000]上是减函数,从而g(x)≤g(10)=-1<0,

所以4lgx-3<0,即4lgx-3<,所以恒成立.

故该函数模型符合公司要求.                   …………………………14分

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

查看答案和解析>>

同步练习册答案