精英家教网 > 高中数学 > 题目详情

已知α>0,0<β<,且α+β=,试问函数y=2-sin2α-cos2β是否有最值?如果有,请求出;如果没有,请说明理由.

答案:
解析:


提示:

  分析:利用三角变换及拆角化简,所给表达式转化为含α或β的式子,再利用β或α的范围求解.

  解题心得:此题为存在型探索性问题,主要考查消元思想的运用和自变量范围的确定,此题的困难在于有两个变量互相牵涉,综观上面两种解法,显然第一种解法容易出错,关键是α范围的确定,实际上本题的条件可以转化为对平面区域的讨论,具体如图.

  从图中容易看出


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知O(0,0),A(cosα,sinα),B(cosβ,sinβ),C(cosγ,sinγ),若k
OA
+(2-k)
OB
+
OC
=
0
,(0<k<2),则cos(α-β)的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点O(0,0),A(1,-2),动点P满足|PA|=3|PO|,则P点的轨迹方程是

A.8x2+8y2+2x-4y-5=0

B.8x2+8y2-2x-4y-5=0

C.8x2+8y2+2x+4y-5=0

D.8x2+8y2-2x+4y-5=0

查看答案和解析>>

科目:高中数学 来源: 题型:

在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布。已知成绩在90分以上(含90分)的学生有12名。

(Ⅰ)、试问此次参赛学生总数约为多少人?

(Ⅱ)、若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?

可共查阅的(部分)标准正态分布表

0

1

2

3

4

5

6

7

8

9

1.2

1.3

1.4

1.9

2.0

2.1

0.8849

0.9032

0.9192

0.9713

0.9772

0.9821

0.8869

0.9049

0.9207

0.9719

0.9778

0.9826

0.888

0.9066

0.9222

0.9726

0.9783

0.9830

0.8907

0.9082

0.9236

0.9732

0.9788

0.9834

0.8925

0.9099

0.9251

0.9738

0.9793

0.9838

0.8944

0.9115

0.9265

0.9744

0.9798

0.9842

0.8962

0.9131

0.9278

0.9750

0.9803

0.9846

0.8980

0.9147

0.9292

0.9756

0.9808

0.9850

0.8997

0.9162

0.9306

0.9762

0.9812

0.9854

0.9015

0.9177

0.9319

0.9767

0.9817

0.9857

点评:本小题主要考查正态分布,对独立事件的概念和标准正态分布的查阅,考查运用概率统计知识解决实际问题的能力。

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省青岛市高三上学期单元测试数学 题型:解答题

 

(12分)(理)在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布。已知成绩在90分以上(含90分)的学生有12名。

 (Ⅰ)、试问此次参赛学生总数约为多少人?

 (Ⅱ)、若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?可共查阅的(部分)标准正态分布表

0

1

2

3

4

5

6

7

8

9

1.2

1.3

1.4

1.9

2.0

2.1

0.8849

0.9032

0.9192

0.9713

0.9772

0.9821

0.8869

0.9049

0.9207

0.9719

0.9778

0.9826

0.888

0.9066

0.9222

0.9726

0.9783

0.9830

0.8907

0.9082

0.9236

0.9732

0.9788

0.9834

0.8925

0.9099

0.9251

0.9738

0.9793

0.9838

0.8944

0.9115

0.9265

0.9744

0.9798

0.9842

0.8962

0.9131

0.9278

0.9750

0.9803

0.9846

0.8980

0.9147

0.9292

0.9756

0.9808

0.9850

0.8997

0.9162

0.9306

0.9762

0.9812

0.9854

0.9015

0.9177

0.9319

0.9767

0.9817

0.9857

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:

在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布。已知成绩在90分以上(含90分)的学生有12名。

(Ⅰ)、试问此次参赛学生总数约为多少人?

(Ⅱ)、若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?

可共查阅的(部分)标准正态分布表

0

1

2

3

4

5

6

7

8

9

1.2 1.3 1.4 1.9 2.0 2.1

0.8849 0.9032 0.9192 0.9713 0.9772 0.9821

0.8869 0.9049 0.9207 0.9719 0.9778 0.9826

0.888 0.9066 0.9222 0.9726 0.9783 0.9830

0.8907 0.9082 0.9236 0.9732 0.9788 0.9834

0.8925 0.9099 0.9251 0.9738 0.9793 0.9838

0.8944 0.9115 0.9265 0.9744 0.9798 0.9842

0.8962 0.9131 0.9278 0.9750 0.9803 0.9846

0.8980 0.9147 0.9292 0.9756 0.9808 0.9850

0.8997 0.9162 0.9306 0.9762 0.9812 0.9854

0.9015 0.9177 0.9319 0.9767 0.9817 0.9857

 

查看答案和解析>>

同步练习册答案