精英家教网 > 高中数学 > 题目详情
已知O(0,0),A(cosα,sinα),B(cosβ,sinβ),C(cosγ,sinγ),若k
OA
+(2-k)
OB
+
OC
=
0
,(0<k<2),则cos(α-β)的最大值是
 
分析:根据已知等式,利用平面向量的数量积运算法则列出关系式,表示出sinγ与cosγ,根据cos2γ+sin2γ=1变形,表示出cos(α-β),利用二次函数的性质及k的范围,即可确定出cos(α-β)的最大值.
解答:解:∵O(0,0),A(cosα,sinα),B(cosβ,sinβ),C(cosγ,sinγ),且k
OA
+(2-k)
OB
+
OC
=
0

∴kcosα+(2-k)cosβ+cosγ=0,ksinα+(2-k)sinβ+sinγ=0,
即cosγ=-(kcosα+(2-k)cosβ),sinγ=-(ksinα+(2-k)sinβ),
∵cos2γ+sin2γ=1,
∴(kcosα+(2-k)cosβ)2+(ksinα+(2-k)sinβ)2=1,
整理得:k2+(2-k)2+2k(2-k)cos(α-β)=1,
∴cos(α-β)=
1-k2-(2-k)2
2k(2-k)
=
-2k2+4k-3
-2k2+4k
=1+
3
2k2-4k
=1+
3
2(k-1)2-2

∵0<k<2,
∴k=1时,2(k-1)2-2取得最小值-2,
则cos(α-β)的最大值为1-
3
2
=-
1
2

故答案为:-
1
2
点评:此题考查了两角和与差的余弦函数公式,平面向量的数量积运算,二次函数的性质,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知O(0,0),A(1,2),B(4,5)及
OP
=
OA
+t
AB
,求:
(1)t为何值时,P点在x轴上?P点在y 轴上?P点在第二象限?
(2)是否存在这样的t值,使四边形OAPB为平行四边形?若存在,求出相应的t值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O(0,0)、A(3,4)、B(2,5),M(x,y)为△OAB内(含三角形的三边与顶点)的动点,则z=3x-2y的最大值是
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O(0,0),A(2,1),B(1,2),则cos∠AOB=
4
5
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O(0,0),A(1,0),P为线段l:x+y=2,(0<x≤1)上的一动点.试求点P,使得P对O、A的视角∠APO最大.

查看答案和解析>>

同步练习册答案