(本小题满分14分)如图所示,在四棱锥中,平面,,
,,是的中点.
(1)证明:平面;
(2)若,,,求二面角的正切值.
解:(1)证明:∵平面,∴。
∵,是的中点
∴为△中边上的高,
∴。
∵,
∴平面。……………………6分
(2)方法1:延长DA、CB相交于点F,连接PF、DB
过点P作PE⊥BC,垂足为E,连接HE
由(1)知平面,则PH⊥BC
又∵PE∩PH=P,∴BC⊥平面PHE,∴BC⊥HE
∴∠PEH就是所求二面角P-BC-D的平面角……………9分
在△FDC中,∵PH=1,AD=1,∴PD=
∵平面,,∴CD⊥平面PAD
∴CD⊥PD,∵PC=,∴CD=4
∵,∴AB=2,∴BD=,
∴AB是△FCD的中位线,FD=CD
∴BD⊥CF
∴HE=
∵PH=1,∴……………14分
方法2:由(1)知平面,如图建立空间直角坐标系.
∵PH=1,AD=1,∴PD=
∵平面,,∴CD⊥平面PAD
∴CD⊥PD,∵PC=,∴CD=4
∴
设平面BCD、平面PBC的法向量分别为
则,设
∵,令,则
,设二面角P-BC-D为,
则,故
【解析】本试题主要是考查了线面垂直和二面角的求解的综合运用。
(1)因平面,∴。∵,是的中点
∴为△中边上的高,∴。∵,
∴平面
(2)延长DA、CB相交于点F,连接PF、DB过点P作PE⊥BC,垂足为E,连接HE
由(1)知平面,则PH⊥BC又∵PE∩PH=P,∴BC⊥平面PHE,∴BC⊥HE
∴∠PEH就是所求二面角P-BC-D的平面角,然后利用解三角形得到结论。
科目:高中数学 来源: 题型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为(a>b>0),曲线C2的方程为y=,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.
(Ⅰ)写出销售额关于第天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知的图像在点处的切线与直线平行.
⑴ 求,满足的关系式;
⑵ 若上恒成立,求的取值范围;
⑶ 证明:()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com