科目:高中数学 来源:2014届北京101中学高三上学期10月阶段性考试理科数学试卷(解析版) 题型:解答题
已知椭圆
:![]()
,
(1)若椭圆的长轴长为4,离心率为
,求椭圆的标准方程;
(2)在(1)的条件下,设过定点
的直线
与椭圆
交于不同的两点
,且
为锐角(
为坐标原点),求直线
的斜率
的取值范围;
(3)过原点
任意作两条互相垂直的直线与椭圆
:![]()
相交于
四点,设原点
到四边形
的一边距离为
,试求
时
满足的条件.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年辽宁沈阳二中等重点中学协作体高三领航高考预测(二)理数学卷(解析版) 题型:解答题
(本小题满分12分)已知椭圆C:
(
.
![]()
(1)若椭圆的长轴长为4,离心率为
,求椭圆的标准方程;
(2)在(1)的条件下,设过定点
的直线
与椭圆C交于不同的两点
,且
为锐角(其中
为坐标原点),求直线
的斜率k的取值范围;
(3)如图,过原点
任意作两条互相垂直的直线与椭圆
(
)相交于
四点,设原点
到四边形
一边的距离为
,试求
时
满足的条件.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年山东省青岛市高三统一质量检测理科数学试卷 题型:解答题
已知椭圆
:
的左焦点
,若椭圆上存在一点
,满足以椭圆短轴为直径的圆与线段
相切于线段
的中点
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知两点
及椭圆
:
,过点
作斜率为
的直线
交椭圆
于
两点,设线段
的中点为
,连结
,试问当
为何值时,直线
过椭圆
的顶点?
(Ⅲ) 过坐标原点
的直线交椭圆
:
于
、
两点,其中
在第一象限,过
作
轴的垂线,垂足为
,连结
并延长交椭圆
于
,求证:![]()
查看答案和解析>>
科目:高中数学 来源:2010-2011学年河南省卫辉市高三第四次月考数学理卷 题型:选择题
已知椭圆的一个焦点为
,若椭圆上存在点
,满足以椭圆短轴为直径的圆与线段
相切于线段
的中点,则该椭圆的离心率
为
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com