精英家教网 > 高中数学 > 题目详情
9.若命题“?x∈R,x2+(a-1)x+1>0”是真命题,则实数a的取值范围是(  )
A.[-1,3]B.(-1,3)C.(-∞,-1]∪[3,+∞)D.(-∞,-1)∪(3,+∞)

分析 若?x∈R,x2+(a-1)x+1>0真命题,则函数y=x2+(a-1)x+1的最小值大于0,即方程x2+(a-1)x+1=0的△=(a-1)2-4<0,解得答案.

解答 解:若?x∈R,x2+(a-1)x+1>0是真命题,
则函数y=x2+(a-1)x+1的最小值大于0,
即方程x2+(a-1)x+1=0的△=(a-1)2-4<0,
解得:-1<a<3,
故选:B.

点评 本题考查的知识点是恒成立问题问题,将恒成立问题,转化为函数的最值问题,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.(1)方程log3(3x-1)=log3(x-1)+log3(3+x)的解是2;
(2)方程lg(4x+2)=1g2x+1g3的解是0,1;
(3)方程log2(x-1)=2-log2(x+1)的解为$\sqrt{5}$;
(4)方程log3(x2-10)=1+log3x的解是5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=x3,则f(x)的单调递增区间为(-∞,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数y=($\frac{1}{3}$)x-1的值域是.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知A(1,0),B(0,1),点C单位圆上的一点,且满足$\overrightarrow{OC}=x\overrightarrow{OA}+y\overrightarrow{OB}$,则λx+y最大值小于2,则λ的范围为(  )
A.$(0,\sqrt{3})$B.$(-\sqrt{3},0)$C.$(-\sqrt{3},\sqrt{3}]$D.$(-\sqrt{3},\sqrt{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.圆C:x2+y2-4x+8y-5=0被抛物线y2=4x的准线截得的弦长为(  )
A.12B.10C.8D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直角梯形ABCD,∠BAD=∠ADC=90°,AB=2AD=2CD=4,沿AC折叠成三棱锥D-ABC,当三棱锥D-ABC体积最大时,其外接球的表面积为(  )
A.$\frac{4}{3}π$B.C.D.16π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知△ABC的三个顶点在同一个球面上,AB=6,BC=8,AC=10.若球心O到平面ABC的距离为5,则该球的表面积为200π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数$f(x)=\frac{a+blnx}{x+1}$在点(1,f(1))处的切线方程为x+y=2.
(1)求a,b的值;
(2)对函数f(x)定义域内的任一个实数x,f(x)<$\frac{m}{{{x^2}+x}}$恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案