精英家教网 > 高中数学 > 题目详情
有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,
得到如下的列联表:
优秀 非优秀 总计
甲班 10
乙班 30
合计 105
已知在全部105人中抽到随机抽取1人为优秀的概率为
2
7

(Ⅰ)请完成上面的列联表;
(Ⅱ)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”;
(Ⅲ)若按下面的方法从甲班优秀的学生抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到6或10号的概率.
分析:(Ⅰ)由全部105人中抽到随机抽取1人为优秀的概率为
2
7
,我们可以计算出优秀人数为30,我们易得到表中各项数据的值.
(Ⅱ)我们可以根据列联表中的数据,代入公式K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,计算出k值,然后代入离散系数表,比较即可得到答案
(Ⅲ)本小题考查的知识点是古典概型,关键是要找出满足条件抽到6或10号的基本事件个数,及总的基本事件的个数,再代入古典概型公式进行计算求解.
解答:解:(Ⅰ)
优秀 非优秀 总计
甲班 10 45 55
乙班 20 30 50
合计 30 75 105
(Ⅱ)根据列联表中的数据,得到k=
105×(10×30-20×45)2
55×50×30×75
≈6.109>3.841

因此有95%的把握认为“成绩与班级有关系”.
(Ⅲ)设“抽到6或10号”为事件A,先后两次抛掷一枚均匀的骰子,出现的点数为(x,y).
所有的基本事件有(1,1)、(1,2)、(1,3)…(6,6),共36个.
事件A包含的基本事件有:(1,5)、(2,4)、(3,3)、(4,2)、
(5,1)(4,6)、(5,5)、(6、4),共8个
P(A)=
8
36
=
2
9
点评:独立性检验的应用的步骤为:根据已知条件将数据归结到一个表格内,列出列联表,再根据列联表中的数据,代入公式K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,计算出k值,然后代入离散系数表,比较即可得到答案.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

从甲、乙两个班级各随机抽取10名同学的数学成绩进行统计分析,两班成绩的茎叶图如图所示,成绩不小于90分为及格.
(I)试完成甲班制取10名同学数学成绩频率分布表,并估计甲班的及格率.
分组 频数 频率
[70,80)
[80,90)
[90,100)
[100,110)
(II)从每班抽取的同学中各抽取一人,求至少有一人及格的概率.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省示范高中高三(上)摸底数学试卷(文科)(解析版) 题型:解答题

从甲、乙两个班级各随机抽取10名同学的数学成绩进行统计分析,两班成绩的茎叶图如图所示,成绩不小于90分为及格.
(I)试完成甲班制取10名同学数学成绩频率分布表,并估计甲班的及格率.
分组频数频率
[70,80)
[80,90)
[90,100)
[100,110)
(II)从每班抽取的同学中各抽取一人,求至少有一人及格的概率.

查看答案和解析>>

同步练习册答案