精英家教网 > 高中数学 > 题目详情
16.如图,已知二面角α-l-β的大小为60°,点A∈α,点B是点A在平面β内的射影,且AB=2,则点B到平面α的距离为1.

分析 先过点B作BC⊥l,则∠ACB为二面角的平面角,∠ACB=60°,然后根据等面积法建立等式关系,解之即可得点B到平面α的距离.

解答 解:如图:
过B,作BC⊥l,则∠ACB=60°,
AB=2,BC=$\frac{2\sqrt{3}}{3}$,AC=$\frac{4\sqrt{3}}{3}$,
根据等面积法得B到平面α的距离为$\frac{2×\frac{2\sqrt{3}}{3}}{\frac{4\sqrt{3}}{3}}$=1,
故答案为:1.

点评 本题主要考查了平面与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知圆O:x2+y2=4上到直线l:x+y=m的距离为1的点有且仅有2个,则m的取值范围是(  )
A.$({-∞,}\right.-\sqrt{2})∪(\sqrt{2},+∞)$B.(-3$\sqrt{2}$,-$\sqrt{2}$)∪($\sqrt{2}$,3$\sqrt{2}$)C.$(-3\sqrt{2},3\sqrt{2})$D.$(-\sqrt{2},\sqrt{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,ABCD是直角梯形,AB∥CD,BC⊥CD,CF⊥平面ABCD,DE∥CF,AD⊥DB.
(1)求证:BD⊥AE.
(2)若DE=1,CB=CD=CF=2,求二面角E-BD-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.行列式中$|\begin{array}{l}{6}&{-3}&{1}\\{2}&{5}&{k}\\{1}&{4}&{-2}\end{array}|$中元素-3的代数余子式的值为7,则k=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ex-kx.
(1)若k>0,且对于任意x∈[0,+∞),f(x)>0恒成立,试确定实数k的取值范围;
(2)设函数F(x)=f(x)+f(-x),
     求证:lnF(1)+lnF(2)+…+lnF(n)>$\frac{n}{2}ln$(en+1+2).(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四棱锥P-ACD中,底面ABCD为等腰梯形,且满足AB∥CD,AD=DC=$\frac{1}{2}$AB=1,PA=$\sqrt{2}$,PA⊥平面ABCD.
(1)求证:BD⊥平面PAD;
(2)求点A到平面PBD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知在平面直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosα}\\{y=sinα}\end{array}\right.$(α为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线m的极坐标方程为ρ=$\frac{a}{2cosθ-sinθ}$(a≠0)
(1)求曲线C的普通方程与直线m的直角坐标方程;
(2)当a=1时,求曲线C上的点到直线m的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρ2=$\frac{15}{1+2co{s}^{2}θ}$,直线l:y=$\frac{\sqrt{3}}{3}$x.
(I)写出直线l的参数方程与极坐标方程;
(Ⅱ)设直线l与曲线C的两个交点分别为A、B,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知圆C:x2+y2-2x-4y+1=0上存在两点关于直线l:x+my+1=0对称,经过点M(m,m)作圆C的切线,切点为P,则|MP|=3.

查看答案和解析>>

同步练习册答案