精英家教网 > 高中数学 > 题目详情
双曲线
x2
m
-
y2
n
=1(m>0,n>0)
的离心率为2,有一个焦点与抛物线y2=4mx的焦点重合,则n的值为(  )
A.1B.4C.8D.12
抛物线y2=4mx的焦点F(m,0)(m≠0)为双曲线一个焦点,∴m+n=m2①,
又双曲线离心率为2,∴1+
n
m
=4,即n=3m②,
②代入①可得 4m=m2
∵m≠0,∴m=4,
∴n=12.
故选D.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

双曲线
x2
m
-
y2
n
=1(mn≠0)的离心率为2,则
m
n
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
m
-
y2
n
=1(m>0,n>0)上的点P(
5
,-
3
)作圆x2+y2=m的切线,切点为A、B,若
PA
PB
=0,则该双曲线的离心率的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•绵阳二模)我们把离心率之差的绝对值小于
1
2
的两条双曲线称为“相近双曲线”.已知双曲线
x2
4
-
y2
12
=1
与双曲线
x2
m
-
y2
n
=1
是“相近双曲线”,则
n
m
的取值范围是
[
4
21
4
5
]∪[
5
4
21
4
]
[
4
21
4
5
]∪[
5
4
21
4
]

查看答案和解析>>

科目:高中数学 来源: 题型:

若双曲线
x2
m
-
y2
n
=1
(mn≠0)的一个焦点与抛物线y2=4x的焦点重合,且离心率为2,则mn的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌一模)如果双曲线
x2
m
-
y2
n
=1(m>0,n>0)的渐近线方程渐近线为y=±
1
2
x,则椭圆
x2
m
+
y2
n
=1
的离心率为(  )

查看答案和解析>>

同步练习册答案