精英家教网 > 高中数学 > 题目详情
抽签方式决定出场顺序.通过预赛,选拔出甲、乙等五支队伍参加决赛.
(Ⅰ)求决赛中甲、乙两支队伍恰好排在前两位的概率;
(Ⅱ)若决赛中甲队和乙队之间间隔的队伍数记为,求的分布列和数学期望.
(Ⅰ)   (Ⅱ)随机变量的数学期望为.

试题分析:(Ⅰ)设“甲、乙两支队伍恰好排在前两位”为事件,则
. 所以甲、乙两支队伍恰好排在前两位的概率为.      
(Ⅱ)随机变量的可能取值为.



.   
随机变量的分布列为:

因为
所以随机变量的数学期望为.    
点评:本题考查等可能事件概率的计算,关键是根据题意,正确列举基本事件空间,得到其包含基本事件的数目.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

个同样型号的产品中,有个是正品,个是次品,从中任取个,求(1)其中所含次品数的期望、方差;(2)事件“含有次品”的概率。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某地区因干旱缺水,政府向市民宣传节约用水,并进行广泛动员 三个月后,统计部门在一个小区随机抽取了户家庭,分别调查了他们在政府动员前后三个月的月平均用水量(单位:吨),将所得数据分组,画出频率分布直方图(如图所示)

动员前                                 动员后
(Ⅰ)已知该小区共有居民户,在政府进行节水动员前平均每月用水量是吨,请估计该小区在政府动员后比动员前平均每月节约用水多少吨;
(Ⅱ)为了解动员前后市民的节水情况,媒体计划在上述家庭中,从政府动员前月均用水量在范围内的家庭中选出户作为采访对象,其中在内的抽到户,求的分布列和期望

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

离散型随机变量的分布列为:


1





则X的期望___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某食品加工厂甲,乙两个车间包装小食品,在自动包装传送带上每隔30分钟抽取一袋食品,称其重量并将数据记录如下:
甲:102  100  98  97  103  101  99
乙: 102  101  99  98  103  98   99
(1)食品厂采用的是什么抽样方法(不必说明理由)?
(2)根据数据估计这两个车间所包装产品每袋的平均质量;
(3)分析哪个车间的技术水平更好些?
附:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面内,不等式确定的平面区域为,不等式组确定的平面区域为.
(1)定义横、纵坐标为整数的点为“整点”. 在区域中任取3个“整点”,求这些“整点”中恰好有2个“整点”落在区域中的概率;
(2)在区域中每次任取一个点,连续取3次,得到3个点,记这3个点落在区域中的个数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

有一种游戏规则如下:口袋里共装有4个红球和4个黄球,一次摸出4个,若颜色都相同,则
得100分;若有3个球颜色相同,另一个不同,则得50分,其他情况不得分. 小张摸一次得分的期望是_____ .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为迎接我校110周年校庆,校友会于日前举办了一次募捐爱心演出,有1000 人参加,每人一张门票,每张100元. 在演出过程中穿插抽奖活动.第一轮抽奖从这1000张票根中随机抽取10张,其持有者获得价值1000元的奖品,并参加第二轮抽奖活动.第二轮抽奖由第一轮获奖者独立操作按钮,电脑随机产生两个数,满足电脑显示“中奖”,且抽奖者获得9000元奖金;否则电脑显示“谢谢”,则不中奖.
(1)已知校友甲在第一轮抽奖中被抽中,求校友甲在第二轮抽奖中获奖的概率;
(2)若校友乙参加了此次活动,求校友乙参加此次活动收益的期望;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)在第9届校园文化艺术节棋类比赛项目报名过程中,我校高二(2)班共有16名男生和14名女生预报名参加,调查发现,男、女选手中分别有10人和6人会围棋.
(I)根据以上数据完成以下22列联表:
 
会围棋
不会围棋
总计

 
 
 

 
 
 
总计
 
 
30
并回答能否在犯错的概率不超过0.10的前提下认为性别与会围棋有关?
参考公式:其中n=a+b+c+d
参考数据:

0.40
0.25
0.10
0.010

0.708
1.323
2.706
6.635
(Ⅱ)若从会围棋的选手中随机抽取3人成立该班围棋代表队,则该代表队中既有男又
有女的概率是多少?
(Ⅲ)若从14名女棋手中随机抽取2人参加棋类比赛,记会围棋的人数为,求的期望.

查看答案和解析>>

同步练习册答案