精英家教网 > 高中数学 > 题目详情
10.设函数f(x)=lnx+$\frac{a}{x}$+x
(Ⅰ)在f(x)=lnx+$\frac{a}{x}$+x(0<x≤2)图象上任意一点P(x0,y0)处切线的斜率k≤$\frac{1}{2}$恒成立,求实数a的取值范围;
(Ⅱ)不等式f(x)≥a+1,对x∈[1,+∞)恒成立,求实数a的取值范围.

分析 (Ⅰ)求出函数的导数,问题转化为a≥${({{\frac{1}{2}x}_{0}}^{2}{+x}_{0})}_{max}$,x0∈(0,2],根据二次函数的性质求出a的范围即可;
(Ⅱ)求出函数f(x) 的导数,令g(x)=x2+x-a,(x≥1),通过讨论a的范围,求出函数的单调区间,结合函数的单调性求出a的范围即可.

解答 解:(Ⅰ)依题意,知f(x)的定义域为(0,+∞),
f′(x)=$\frac{1}{x}$-$\frac{a}{{x}^{2}}$+1,x∈(0,2],
则有k=f′(x0)=$\frac{{{x}_{0}}^{2}{+x}_{0}-a}{{{x}_{0}}^{2}}$≤$\frac{1}{2}$,在x0∈(0,2]上恒成立,
所以a≥${({{\frac{1}{2}x}_{0}}^{2}{+x}_{0})}_{max}$,x0∈(0,2],
当x0=2时,$\frac{1}{2}$${{x}_{0}}^{2}$+x0取得最大值4,所以a≥4;
(Ⅱ)由不等式f(x)≥a+1,对x∈[1,+∞)恒成立,
f′(x)=$\frac{{x}^{2}+x-a}{{x}^{2}}$,令g(x)=x2+x-a,(x≥1),
则g(x)是x∈[1,+∞)上的增函数,即g(x)≥2-a,
①当a≤2时,g(x)≥0,所以f′(x)≥0,因此f(x)是x∈[1,+∞)上的增函数,
则f(x)≥f(1)=0,因此a≤2时,不等式成立;   
②当a>2时,即对x∈[1,+∞),f′(x)=0时,g(x)=0,
求得x1=$\frac{-1+\sqrt{1+4a}}{2}$,(由于x≥1,所以舍去x2=-1-$\frac{-1-\sqrt{1+4a}}{2}$)
当x∈[1,$\frac{-1+\sqrt{1+4a}}{2}$)时,f′(x)<0,则f(x)是x∈[1,$\frac{-1+\sqrt{1+4a}}{2}$)上的减函数,
当x∈$\frac{-1+\sqrt{1+4a}}{2}$,+∞)时,f′(x)>0,
则f(x)是x∈($\frac{-1+\sqrt{1+4a}}{2}$,+∞)上的增函数,
所以当x∈(1,$\frac{-1+\sqrt{1+4a}}{2}$)时,f(x)<f(1)=0,
因此a>2时,不等式不成立;
综合上述,所求范围是a≤2.

点评 本题考查了函数的单调性问题,考查导数的应用以及函数恒成立问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知点A(-3,0),B(1,0),线段AB是圆M的直径.
(Ⅰ)求圆M的方程;
(Ⅱ)过点(0,2)的直线l与圆M相交于D,E两点,且$|{DE}|=2\sqrt{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=2ex+1,则f'(0)的值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.我市每年中考都要举行实验操作考试和体能测试,初三某班共有30名学生,下表为该班学生的这两项成绩,例如表中实验操作考试和体能测试都为优秀的学生人数为6人.由于部分数据丢失,只知道从这班30人中随机抽取一个,实验操作成绩合格,且体能测试成
实验操作
不合格合格良好优秀



不合格0011
合格021b
良好1a24
优秀1236
绩合格或合格以上的概率是$\frac{1}{5}$.
(Ⅰ)试确定a、b的值;
(Ⅱ)从30人中任意抽取3人,设实验操作考试和体能测试成绩都是良好或优秀的学生人数为ξ,求随机变量ξ的分布列及数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,某几何体的三视图中,正视图和侧视图都是半径为$\sqrt{3}$的半圆和相同的正三角形,其中三角形的上顶点是半圆的中点,底边在直径上,则它的表面积是(  )
A.B.C.10πD.11π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=(a2+a-5)logax为对数函数,则f($\frac{1}{8}$)等于(  )
A.3B.-3C.-log36D.-log38

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若y=f(x)=Asin(ωx+φ)(A>0,ω>0,$|φ|<\frac{π}{2})$的部分图象如图所示.
( I)求函数y=f(x)的解析式;
( II)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象;若y=g(x)图象的一个对称中心为$(\frac{5π}{6},0)$,求θ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.直线2x-y+a=0与3x+y-3=0交于第一象限,当点P(x,y)在不等式组$\left\{\begin{array}{l}{2x-y+a≥0}\\{3x+y-3≤0}\end{array}\right.$,表示的区域上运动时,m=4x+3y的最大值为8,则实数a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.定义在实数集R上函数y=f(x)的反函数为y=f-1(x).若函数y=f(-x)的反函数是y=f-1(-x),则y=f(-x)是(  )
A.是奇函数,不是偶函数B.是偶函数,不是奇函数
C.既是奇函数数,又是偶函数D.既不是奇函数,也不是偶函数

查看答案和解析>>

同步练习册答案