(本题满分14分)
设
为实数,函数
.
(1)若
,求
的取值范围;
(2)求
的最小值;
(3)设函数
,直接写出(不需给出演算步骤)不等式
的解集.
(1)
;(2)![]()
(3)当
时,
;
当
时,△>0,得:![]()
讨论得:当
时,解集为
;
当
时,解集为
;
当
时,解集为
.
【解析】本试题主要是考查了二次函数的最值,二次不等式的求解,以及二次函数的性质的综合运用。
(1)根据已知条件,先去掉绝对值,然后解不等式得到结论。
(2)由于该函数是分段函数,所以需要分段讨论求解最值,然后根据已知函数x与a的关系,得到解析式,然后运用二次函数的开口和对称轴,以及定义域的到最值。
(4)主要是含有参数的二次不等式的分类讨论求解集的思想的运用。
解: (1)若
,则![]()
(2)当
时,![]()
![]()
当
时,![]()
![]()
综上![]()
(3)
时,
得
,![]()
当
时,
;
当
时,△>0,得:![]()
讨论得:当
时,解集为
;
当
时,解集为
;
当
时,解集为
.
科目:高中数学 来源: 题型:
| π |
| 3 |
|
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分14分)如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,
为
上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;(2)求三棱锥D-AEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题
(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若A
B=[0,3],求实数m的值
(Ⅱ)若A
CRB,求实数m的取值范围
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三上学期第三次月考理科数学卷 题型:解答题
(本题满分14分)
已知点
是⊙
:
上的任意一点,过
作
垂直
轴于
,动点
满足
。
(1)求动点
的轨迹方程;
(2)已知点
,在动点
的轨迹上是否存在两个不重合的两点
、
,使
(O是坐标原点),若存在,求出直线
的方程,若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源:2014届江西省高一第二学期入学考试数学 题型:解答题
(本题满分14分)已知函数
.
(1)求函数
的定义域;
(2)判断
的奇偶性;
(3)方程
是否有根?如果有根
,请求出一个长度为
的区间
,使![]()
![]()
;如果没有,请说明理由?(注:区间的长度为
).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com